123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837 |
- /* dtgsen.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c__2 = 2;
- static doublereal c_b28 = 1.;
- /* Subroutine */ int _starpu_dtgsen_(integer *ijob, logical *wantq, logical *wantz,
- logical *select, integer *n, doublereal *a, integer *lda, doublereal *
- b, integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *
- beta, doublereal *q, integer *ldq, doublereal *z__, integer *ldz,
- integer *m, doublereal *pl, doublereal *pr, doublereal *dif,
- doublereal *work, integer *lwork, integer *iwork, integer *liwork,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
- z_offset, i__1, i__2;
- doublereal d__1;
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
- /* Local variables */
- integer i__, k, n1, n2, kk, ks, mn2, ijb;
- doublereal eps;
- integer kase;
- logical pair;
- integer ierr;
- doublereal dsum;
- logical swap;
- extern /* Subroutine */ int _starpu_dlag2_(doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *);
- integer isave[3];
- logical wantd;
- integer lwmin;
- logical wantp;
- extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- logical wantd1, wantd2;
- extern doublereal _starpu_dlamch_(char *);
- doublereal dscale, rdscal;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *), _starpu_dtgexc_(logical *, logical *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *,
- integer *, doublereal *, integer *, integer *), _starpu_dlassq_(integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- integer liwmin;
- extern /* Subroutine */ int _starpu_dtgsyl_(char *, integer *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *, integer *);
- doublereal smlnum;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* January 2007 */
- /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTGSEN reorders the generalized real Schur decomposition of a real */
- /* matrix pair (A, B) (in terms of an orthonormal equivalence trans- */
- /* formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues */
- /* appears in the leading diagonal blocks of the upper quasi-triangular */
- /* matrix A and the upper triangular B. The leading columns of Q and */
- /* Z form orthonormal bases of the corresponding left and right eigen- */
- /* spaces (deflating subspaces). (A, B) must be in generalized real */
- /* Schur canonical form (as returned by DGGES), i.e. A is block upper */
- /* triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper */
- /* triangular. */
- /* DTGSEN also computes the generalized eigenvalues */
- /* w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j) */
- /* of the reordered matrix pair (A, B). */
- /* Optionally, DTGSEN computes the estimates of reciprocal condition */
- /* numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), */
- /* (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) */
- /* between the matrix pairs (A11, B11) and (A22,B22) that correspond to */
- /* the selected cluster and the eigenvalues outside the cluster, resp., */
- /* and norms of "projections" onto left and right eigenspaces w.r.t. */
- /* the selected cluster in the (1,1)-block. */
- /* Arguments */
- /* ========= */
- /* IJOB (input) INTEGER */
- /* Specifies whether condition numbers are required for the */
- /* cluster of eigenvalues (PL and PR) or the deflating subspaces */
- /* (Difu and Difl): */
- /* =0: Only reorder w.r.t. SELECT. No extras. */
- /* =1: Reciprocal of norms of "projections" onto left and right */
- /* eigenspaces w.r.t. the selected cluster (PL and PR). */
- /* =2: Upper bounds on Difu and Difl. F-norm-based estimate */
- /* (DIF(1:2)). */
- /* =3: Estimate of Difu and Difl. 1-norm-based estimate */
- /* (DIF(1:2)). */
- /* About 5 times as expensive as IJOB = 2. */
- /* =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic */
- /* version to get it all. */
- /* =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) */
- /* WANTQ (input) LOGICAL */
- /* .TRUE. : update the left transformation matrix Q; */
- /* .FALSE.: do not update Q. */
- /* WANTZ (input) LOGICAL */
- /* .TRUE. : update the right transformation matrix Z; */
- /* .FALSE.: do not update Z. */
- /* SELECT (input) LOGICAL array, dimension (N) */
- /* SELECT specifies the eigenvalues in the selected cluster. */
- /* To select a real eigenvalue w(j), SELECT(j) must be set to */
- /* .TRUE.. To select a complex conjugate pair of eigenvalues */
- /* w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
- /* either SELECT(j) or SELECT(j+1) or both must be set to */
- /* .TRUE.; a complex conjugate pair of eigenvalues must be */
- /* either both included in the cluster or both excluded. */
- /* N (input) INTEGER */
- /* The order of the matrices A and B. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension(LDA,N) */
- /* On entry, the upper quasi-triangular matrix A, with (A, B) in */
- /* generalized real Schur canonical form. */
- /* On exit, A is overwritten by the reordered matrix A. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* B (input/output) DOUBLE PRECISION array, dimension(LDB,N) */
- /* On entry, the upper triangular matrix B, with (A, B) in */
- /* generalized real Schur canonical form. */
- /* On exit, B is overwritten by the reordered matrix B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */
- /* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */
- /* BETA (output) DOUBLE PRECISION array, dimension (N) */
- /* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
- /* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */
- /* and BETA(j),j=1,...,N are the diagonals of the complex Schur */
- /* form (S,T) that would result if the 2-by-2 diagonal blocks of */
- /* the real generalized Schur form of (A,B) were further reduced */
- /* to triangular form using complex unitary transformations. */
- /* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
- /* positive, then the j-th and (j+1)-st eigenvalues are a */
- /* complex conjugate pair, with ALPHAI(j+1) negative. */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
- /* On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. */
- /* On exit, Q has been postmultiplied by the left orthogonal */
- /* transformation matrix which reorder (A, B); The leading M */
- /* columns of Q form orthonormal bases for the specified pair of */
- /* left eigenspaces (deflating subspaces). */
- /* If WANTQ = .FALSE., Q is not referenced. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= 1; */
- /* and if WANTQ = .TRUE., LDQ >= N. */
- /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
- /* On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. */
- /* On exit, Z has been postmultiplied by the left orthogonal */
- /* transformation matrix which reorder (A, B); The leading M */
- /* columns of Z form orthonormal bases for the specified pair of */
- /* left eigenspaces (deflating subspaces). */
- /* If WANTZ = .FALSE., Z is not referenced. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1; */
- /* If WANTZ = .TRUE., LDZ >= N. */
- /* M (output) INTEGER */
- /* The dimension of the specified pair of left and right eigen- */
- /* spaces (deflating subspaces). 0 <= M <= N. */
- /* PL (output) DOUBLE PRECISION */
- /* PR (output) DOUBLE PRECISION */
- /* If IJOB = 1, 4 or 5, PL, PR are lower bounds on the */
- /* reciprocal of the norm of "projections" onto left and right */
- /* eigenspaces with respect to the selected cluster. */
- /* 0 < PL, PR <= 1. */
- /* If M = 0 or M = N, PL = PR = 1. */
- /* If IJOB = 0, 2 or 3, PL and PR are not referenced. */
- /* DIF (output) DOUBLE PRECISION array, dimension (2). */
- /* If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. */
- /* If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on */
- /* Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based */
- /* estimates of Difu and Difl. */
- /* If M = 0 or N, DIF(1:2) = F-norm([A, B]). */
- /* If IJOB = 0 or 1, DIF is not referenced. */
- /* WORK (workspace/output) DOUBLE PRECISION array, */
- /* dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= 4*N+16. */
- /* If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)). */
- /* If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)). */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
- /* IF IJOB = 0, IWORK is not referenced. Otherwise, */
- /* on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
- /* LIWORK (input) INTEGER */
- /* The dimension of the array IWORK. LIWORK >= 1. */
- /* If IJOB = 1, 2 or 4, LIWORK >= N+6. */
- /* If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6). */
- /* If LIWORK = -1, then a workspace query is assumed; the */
- /* routine only calculates the optimal size of the IWORK array, */
- /* returns this value as the first entry of the IWORK array, and */
- /* no error message related to LIWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* =0: Successful exit. */
- /* <0: If INFO = -i, the i-th argument had an illegal value. */
- /* =1: Reordering of (A, B) failed because the transformed */
- /* matrix pair (A, B) would be too far from generalized */
- /* Schur form; the problem is very ill-conditioned. */
- /* (A, B) may have been partially reordered. */
- /* If requested, 0 is returned in DIF(*), PL and PR. */
- /* Further Details */
- /* =============== */
- /* DTGSEN first collects the selected eigenvalues by computing */
- /* orthogonal U and W that move them to the top left corner of (A, B). */
- /* In other words, the selected eigenvalues are the eigenvalues of */
- /* (A11, B11) in: */
- /* U'*(A, B)*W = (A11 A12) (B11 B12) n1 */
- /* ( 0 A22),( 0 B22) n2 */
- /* n1 n2 n1 n2 */
- /* where N = n1+n2 and U' means the transpose of U. The first n1 columns */
- /* of U and W span the specified pair of left and right eigenspaces */
- /* (deflating subspaces) of (A, B). */
- /* If (A, B) has been obtained from the generalized real Schur */
- /* decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the */
- /* reordered generalized real Schur form of (C, D) is given by */
- /* (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)', */
- /* and the first n1 columns of Q*U and Z*W span the corresponding */
- /* deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). */
- /* Note that if the selected eigenvalue is sufficiently ill-conditioned, */
- /* then its value may differ significantly from its value before */
- /* reordering. */
- /* The reciprocal condition numbers of the left and right eigenspaces */
- /* spanned by the first n1 columns of U and W (or Q*U and Z*W) may */
- /* be returned in DIF(1:2), corresponding to Difu and Difl, resp. */
- /* The Difu and Difl are defined as: */
- /* Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) */
- /* and */
- /* Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], */
- /* where sigma-min(Zu) is the smallest singular value of the */
- /* (2*n1*n2)-by-(2*n1*n2) matrix */
- /* Zu = [ kron(In2, A11) -kron(A22', In1) ] */
- /* [ kron(In2, B11) -kron(B22', In1) ]. */
- /* Here, Inx is the identity matrix of size nx and A22' is the */
- /* transpose of A22. kron(X, Y) is the Kronecker product between */
- /* the matrices X and Y. */
- /* When DIF(2) is small, small changes in (A, B) can cause large changes */
- /* in the deflating subspace. An approximate (asymptotic) bound on the */
- /* maximum angular error in the computed deflating subspaces is */
- /* EPS * norm((A, B)) / DIF(2), */
- /* where EPS is the machine precision. */
- /* The reciprocal norm of the projectors on the left and right */
- /* eigenspaces associated with (A11, B11) may be returned in PL and PR. */
- /* They are computed as follows. First we compute L and R so that */
- /* P*(A, B)*Q is block diagonal, where */
- /* P = ( I -L ) n1 Q = ( I R ) n1 */
- /* ( 0 I ) n2 and ( 0 I ) n2 */
- /* n1 n2 n1 n2 */
- /* and (L, R) is the solution to the generalized Sylvester equation */
- /* A11*R - L*A22 = -A12 */
- /* B11*R - L*B22 = -B12 */
- /* Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). */
- /* An approximate (asymptotic) bound on the average absolute error of */
- /* the selected eigenvalues is */
- /* EPS * norm((A, B)) / PL. */
- /* There are also global error bounds which valid for perturbations up */
- /* to a certain restriction: A lower bound (x) on the smallest */
- /* F-norm(E,F) for which an eigenvalue of (A11, B11) may move and */
- /* coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), */
- /* (i.e. (A + E, B + F), is */
- /* x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). */
- /* An approximate bound on x can be computed from DIF(1:2), PL and PR. */
- /* If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed */
- /* (L', R') and unperturbed (L, R) left and right deflating subspaces */
- /* associated with the selected cluster in the (1,1)-blocks can be */
- /* bounded as */
- /* max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) */
- /* max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) */
- /* See LAPACK User's Guide section 4.11 or the following references */
- /* for more information. */
- /* Note that if the default method for computing the Frobenius-norm- */
- /* based estimate DIF is not wanted (see DLATDF), then the parameter */
- /* IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF */
- /* (IJOB = 2 will be used)). See DTGSYL for more details. */
- /* Based on contributions by */
- /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* Umea University, S-901 87 Umea, Sweden. */
- /* References */
- /* ========== */
- /* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
- /* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
- /* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
- /* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
- /* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
- /* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
- /* Estimation: Theory, Algorithms and Software, */
- /* Report UMINF - 94.04, Department of Computing Science, Umea */
- /* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
- /* Note 87. To appear in Numerical Algorithms, 1996. */
- /* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
- /* for Solving the Generalized Sylvester Equation and Estimating the */
- /* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
- /* Department of Computing Science, Umea University, S-901 87 Umea, */
- /* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
- /* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, */
- /* 1996. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode and test the input parameters */
- /* Parameter adjustments */
- --select;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --alphar;
- --alphai;
- --beta;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --dif;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1 || *liwork == -1;
- if (*ijob < 0 || *ijob > 5) {
- *info = -1;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < max(1,*n)) {
- *info = -7;
- } else if (*ldb < max(1,*n)) {
- *info = -9;
- } else if (*ldq < 1 || *wantq && *ldq < *n) {
- *info = -14;
- } else if (*ldz < 1 || *wantz && *ldz < *n) {
- *info = -16;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTGSEN", &i__1);
- return 0;
- }
- /* Get machine constants */
- eps = _starpu_dlamch_("P");
- smlnum = _starpu_dlamch_("S") / eps;
- ierr = 0;
- wantp = *ijob == 1 || *ijob >= 4;
- wantd1 = *ijob == 2 || *ijob == 4;
- wantd2 = *ijob == 3 || *ijob == 5;
- wantd = wantd1 || wantd2;
- /* Set M to the dimension of the specified pair of deflating */
- /* subspaces. */
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- if (k < *n) {
- if (a[k + 1 + k * a_dim1] == 0.) {
- if (select[k]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[k] || select[k + 1]) {
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
- /* L10: */
- }
- if (*ijob == 1 || *ijob == 2 || *ijob == 4) {
- /* Computing MAX */
- i__1 = 1, i__2 = (*n << 2) + 16, i__1 = max(i__1,i__2), i__2 = (*m <<
- 1) * (*n - *m);
- lwmin = max(i__1,i__2);
- /* Computing MAX */
- i__1 = 1, i__2 = *n + 6;
- liwmin = max(i__1,i__2);
- } else if (*ijob == 3 || *ijob == 5) {
- /* Computing MAX */
- i__1 = 1, i__2 = (*n << 2) + 16, i__1 = max(i__1,i__2), i__2 = (*m <<
- 2) * (*n - *m);
- lwmin = max(i__1,i__2);
- /* Computing MAX */
- i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = max(i__1,i__2), i__2 =
- *n + 6;
- liwmin = max(i__1,i__2);
- } else {
- /* Computing MAX */
- i__1 = 1, i__2 = (*n << 2) + 16;
- lwmin = max(i__1,i__2);
- liwmin = 1;
- }
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- if (*lwork < lwmin && ! lquery) {
- *info = -22;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -24;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTGSEN", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible. */
- if (*m == *n || *m == 0) {
- if (wantp) {
- *pl = 1.;
- *pr = 1.;
- }
- if (wantd) {
- dscale = 0.;
- dsum = 1.;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- _starpu_dlassq_(n, &a[i__ * a_dim1 + 1], &c__1, &dscale, &dsum);
- _starpu_dlassq_(n, &b[i__ * b_dim1 + 1], &c__1, &dscale, &dsum);
- /* L20: */
- }
- dif[1] = dscale * sqrt(dsum);
- dif[2] = dif[1];
- }
- goto L60;
- }
- /* Collect the selected blocks at the top-left corner of (A, B). */
- ks = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- swap = select[k];
- if (k < *n) {
- if (a[k + 1 + k * a_dim1] != 0.) {
- pair = TRUE_;
- swap = swap || select[k + 1];
- }
- }
- if (swap) {
- ++ks;
- /* Swap the K-th block to position KS. */
- /* Perform the reordering of diagonal blocks in (A, B) */
- /* by orthogonal transformation matrices and update */
- /* Q and Z accordingly (if requested): */
- kk = k;
- if (k != ks) {
- _starpu_dtgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset],
- ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &kk,
- &ks, &work[1], lwork, &ierr);
- }
- if (ierr > 0) {
- /* Swap is rejected: exit. */
- *info = 1;
- if (wantp) {
- *pl = 0.;
- *pr = 0.;
- }
- if (wantd) {
- dif[1] = 0.;
- dif[2] = 0.;
- }
- goto L60;
- }
- if (pair) {
- ++ks;
- }
- }
- }
- /* L30: */
- }
- if (wantp) {
- /* Solve generalized Sylvester equation for R and L */
- /* and compute PL and PR. */
- n1 = *m;
- n2 = *n - *m;
- i__ = n1 + 1;
- ijb = 0;
- _starpu_dlacpy_("Full", &n1, &n2, &a[i__ * a_dim1 + 1], lda, &work[1], &n1);
- _starpu_dlacpy_("Full", &n1, &n2, &b[i__ * b_dim1 + 1], ldb, &work[n1 * n2 +
- 1], &n1);
- i__1 = *lwork - (n1 << 1) * n2;
- _starpu_dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1]
- , lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ *
- b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &
- work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr);
- /* Estimate the reciprocal of norms of "projections" onto left */
- /* and right eigenspaces. */
- rdscal = 0.;
- dsum = 1.;
- i__1 = n1 * n2;
- _starpu_dlassq_(&i__1, &work[1], &c__1, &rdscal, &dsum);
- *pl = rdscal * sqrt(dsum);
- if (*pl == 0.) {
- *pl = 1.;
- } else {
- *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl));
- }
- rdscal = 0.;
- dsum = 1.;
- i__1 = n1 * n2;
- _starpu_dlassq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum);
- *pr = rdscal * sqrt(dsum);
- if (*pr == 0.) {
- *pr = 1.;
- } else {
- *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr));
- }
- }
- if (wantd) {
- /* Compute estimates of Difu and Difl. */
- if (wantd1) {
- n1 = *m;
- n2 = *n - *m;
- i__ = n1 + 1;
- ijb = 3;
- /* Frobenius norm-based Difu-estimate. */
- i__1 = *lwork - (n1 << 1) * n2;
- _starpu_dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ *
- a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ +
- i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &
- dif[1], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &
- ierr);
- /* Frobenius norm-based Difl-estimate. */
- i__1 = *lwork - (n1 << 1) * n2;
- _starpu_dtgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[
- a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1],
- ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale,
- &dif[2], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &
- ierr);
- } else {
- /* Compute 1-norm-based estimates of Difu and Difl using */
- /* reversed communication with DLACN2. In each step a */
- /* generalized Sylvester equation or a transposed variant */
- /* is solved. */
- kase = 0;
- n1 = *m;
- n2 = *n - *m;
- i__ = n1 + 1;
- ijb = 0;
- mn2 = (n1 << 1) * n2;
- /* 1-norm-based estimate of Difu. */
- L40:
- _starpu_dlacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[1], &kase,
- isave);
- if (kase != 0) {
- if (kase == 1) {
- /* Solve generalized Sylvester equation. */
- i__1 = *lwork - (n1 << 1) * n2;
- _starpu_dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ +
- i__ * a_dim1], lda, &work[1], &n1, &b[b_offset],
- ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 +
- 1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 +
- 1], &i__1, &iwork[1], &ierr);
- } else {
- /* Solve the transposed variant. */
- i__1 = *lwork - (n1 << 1) * n2;
- _starpu_dtgsyl_("T", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ +
- i__ * a_dim1], lda, &work[1], &n1, &b[b_offset],
- ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 +
- 1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 +
- 1], &i__1, &iwork[1], &ierr);
- }
- goto L40;
- }
- dif[1] = dscale / dif[1];
- /* 1-norm-based estimate of Difl. */
- L50:
- _starpu_dlacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[2], &kase,
- isave);
- if (kase != 0) {
- if (kase == 1) {
- /* Solve generalized Sylvester equation. */
- i__1 = *lwork - (n1 << 1) * n2;
- _starpu_dtgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda,
- &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ *
- b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 +
- 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 +
- 1], &i__1, &iwork[1], &ierr);
- } else {
- /* Solve the transposed variant. */
- i__1 = *lwork - (n1 << 1) * n2;
- _starpu_dtgsyl_("T", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda,
- &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ *
- b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 +
- 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 +
- 1], &i__1, &iwork[1], &ierr);
- }
- goto L50;
- }
- dif[2] = dscale / dif[2];
- }
- }
- L60:
- /* Compute generalized eigenvalues of reordered pair (A, B) and */
- /* normalize the generalized Schur form. */
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- if (k < *n) {
- if (a[k + 1 + k * a_dim1] != 0.) {
- pair = TRUE_;
- }
- }
- if (pair) {
- /* Compute the eigenvalue(s) at position K. */
- work[1] = a[k + k * a_dim1];
- work[2] = a[k + 1 + k * a_dim1];
- work[3] = a[k + (k + 1) * a_dim1];
- work[4] = a[k + 1 + (k + 1) * a_dim1];
- work[5] = b[k + k * b_dim1];
- work[6] = b[k + 1 + k * b_dim1];
- work[7] = b[k + (k + 1) * b_dim1];
- work[8] = b[k + 1 + (k + 1) * b_dim1];
- d__1 = smlnum * eps;
- _starpu_dlag2_(&work[1], &c__2, &work[5], &c__2, &d__1, &beta[k], &
- beta[k + 1], &alphar[k], &alphar[k + 1], &alphai[k]);
- alphai[k + 1] = -alphai[k];
- } else {
- if (d_sign(&c_b28, &b[k + k * b_dim1]) < 0.) {
- /* If B(K,K) is negative, make it positive */
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[k + i__ * a_dim1] = -a[k + i__ * a_dim1];
- b[k + i__ * b_dim1] = -b[k + i__ * b_dim1];
- if (*wantq) {
- q[i__ + k * q_dim1] = -q[i__ + k * q_dim1];
- }
- /* L70: */
- }
- }
- alphar[k] = a[k + k * a_dim1];
- alphai[k] = 0.;
- beta[k] = b[k + k * b_dim1];
- }
- }
- /* L80: */
- }
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- return 0;
- /* End of DTGSEN */
- } /* _starpu_dtgsen_ */
|