123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419 |
- /* dtgevc.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static logical c_true = TRUE_;
- static integer c__2 = 2;
- static doublereal c_b34 = 1.;
- static integer c__1 = 1;
- static doublereal c_b36 = 0.;
- static logical c_false = FALSE_;
- /* Subroutine */ int _starpu_dtgevc_(char *side, char *howmny, logical *select,
- integer *n, doublereal *s, integer *lds, doublereal *p, integer *ldp,
- doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, integer
- *mm, integer *m, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer p_dim1, p_offset, s_dim1, s_offset, vl_dim1, vl_offset, vr_dim1,
- vr_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1, d__2, d__3, d__4, d__5, d__6;
- /* Local variables */
- integer i__, j, ja, jc, je, na, im, jr, jw, nw;
- doublereal big;
- logical lsa, lsb;
- doublereal ulp, sum[4] /* was [2][2] */;
- integer ibeg, ieig, iend;
- doublereal dmin__, temp, xmax, sump[4] /* was [2][2] */, sums[4]
- /* was [2][2] */;
- extern /* Subroutine */ int _starpu_dlag2_(doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *);
- doublereal cim2a, cim2b, cre2a, cre2b, temp2, bdiag[2], acoef, scale;
- logical ilall;
- integer iside;
- doublereal sbeta;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- logical il2by2;
- integer iinfo;
- doublereal small;
- logical compl;
- doublereal anorm, bnorm;
- logical compr;
- extern /* Subroutine */ int _starpu_dlaln2_(logical *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *
- , doublereal *, integer *, doublereal *, doublereal *, integer *);
- doublereal temp2i;
- extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *);
- doublereal temp2r;
- logical ilabad, ilbbad;
- doublereal acoefa, bcoefa, cimaga, cimagb;
- logical ilback;
- doublereal bcoefi, ascale, bscale, creala, crealb;
- extern doublereal _starpu_dlamch_(char *);
- doublereal bcoefr, salfar, safmin;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *);
- doublereal xscale, bignum;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- logical ilcomp, ilcplx;
- integer ihwmny;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTGEVC computes some or all of the right and/or left eigenvectors of */
- /* a pair of real matrices (S,P), where S is a quasi-triangular matrix */
- /* and P is upper triangular. Matrix pairs of this type are produced by */
- /* the generalized Schur factorization of a matrix pair (A,B): */
- /* A = Q*S*Z**T, B = Q*P*Z**T */
- /* as computed by DGGHRD + DHGEQZ. */
- /* The right eigenvector x and the left eigenvector y of (S,P) */
- /* corresponding to an eigenvalue w are defined by: */
- /* S*x = w*P*x, (y**H)*S = w*(y**H)*P, */
- /* where y**H denotes the conjugate tranpose of y. */
- /* The eigenvalues are not input to this routine, but are computed */
- /* directly from the diagonal blocks of S and P. */
- /* This routine returns the matrices X and/or Y of right and left */
- /* eigenvectors of (S,P), or the products Z*X and/or Q*Y, */
- /* where Z and Q are input matrices. */
- /* If Q and Z are the orthogonal factors from the generalized Schur */
- /* factorization of a matrix pair (A,B), then Z*X and Q*Y */
- /* are the matrices of right and left eigenvectors of (A,B). */
- /* Arguments */
- /* ========= */
- /* SIDE (input) CHARACTER*1 */
- /* = 'R': compute right eigenvectors only; */
- /* = 'L': compute left eigenvectors only; */
- /* = 'B': compute both right and left eigenvectors. */
- /* HOWMNY (input) CHARACTER*1 */
- /* = 'A': compute all right and/or left eigenvectors; */
- /* = 'B': compute all right and/or left eigenvectors, */
- /* backtransformed by the matrices in VR and/or VL; */
- /* = 'S': compute selected right and/or left eigenvectors, */
- /* specified by the logical array SELECT. */
- /* SELECT (input) LOGICAL array, dimension (N) */
- /* If HOWMNY='S', SELECT specifies the eigenvectors to be */
- /* computed. If w(j) is a real eigenvalue, the corresponding */
- /* real eigenvector is computed if SELECT(j) is .TRUE.. */
- /* If w(j) and w(j+1) are the real and imaginary parts of a */
- /* complex eigenvalue, the corresponding complex eigenvector */
- /* is computed if either SELECT(j) or SELECT(j+1) is .TRUE., */
- /* and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is */
- /* set to .FALSE.. */
- /* Not referenced if HOWMNY = 'A' or 'B'. */
- /* N (input) INTEGER */
- /* The order of the matrices S and P. N >= 0. */
- /* S (input) DOUBLE PRECISION array, dimension (LDS,N) */
- /* The upper quasi-triangular matrix S from a generalized Schur */
- /* factorization, as computed by DHGEQZ. */
- /* LDS (input) INTEGER */
- /* The leading dimension of array S. LDS >= max(1,N). */
- /* P (input) DOUBLE PRECISION array, dimension (LDP,N) */
- /* The upper triangular matrix P from a generalized Schur */
- /* factorization, as computed by DHGEQZ. */
- /* 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks */
- /* of S must be in positive diagonal form. */
- /* LDP (input) INTEGER */
- /* The leading dimension of array P. LDP >= max(1,N). */
- /* VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM) */
- /* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
- /* contain an N-by-N matrix Q (usually the orthogonal matrix Q */
- /* of left Schur vectors returned by DHGEQZ). */
- /* On exit, if SIDE = 'L' or 'B', VL contains: */
- /* if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); */
- /* if HOWMNY = 'B', the matrix Q*Y; */
- /* if HOWMNY = 'S', the left eigenvectors of (S,P) specified by */
- /* SELECT, stored consecutively in the columns of */
- /* VL, in the same order as their eigenvalues. */
- /* A complex eigenvector corresponding to a complex eigenvalue */
- /* is stored in two consecutive columns, the first holding the */
- /* real part, and the second the imaginary part. */
- /* Not referenced if SIDE = 'R'. */
- /* LDVL (input) INTEGER */
- /* The leading dimension of array VL. LDVL >= 1, and if */
- /* SIDE = 'L' or 'B', LDVL >= N. */
- /* VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM) */
- /* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
- /* contain an N-by-N matrix Z (usually the orthogonal matrix Z */
- /* of right Schur vectors returned by DHGEQZ). */
- /* On exit, if SIDE = 'R' or 'B', VR contains: */
- /* if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); */
- /* if HOWMNY = 'B' or 'b', the matrix Z*X; */
- /* if HOWMNY = 'S' or 's', the right eigenvectors of (S,P) */
- /* specified by SELECT, stored consecutively in the */
- /* columns of VR, in the same order as their */
- /* eigenvalues. */
- /* A complex eigenvector corresponding to a complex eigenvalue */
- /* is stored in two consecutive columns, the first holding the */
- /* real part and the second the imaginary part. */
- /* Not referenced if SIDE = 'L'. */
- /* LDVR (input) INTEGER */
- /* The leading dimension of the array VR. LDVR >= 1, and if */
- /* SIDE = 'R' or 'B', LDVR >= N. */
- /* MM (input) INTEGER */
- /* The number of columns in the arrays VL and/or VR. MM >= M. */
- /* M (output) INTEGER */
- /* The number of columns in the arrays VL and/or VR actually */
- /* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M */
- /* is set to N. Each selected real eigenvector occupies one */
- /* column and each selected complex eigenvector occupies two */
- /* columns. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (6*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: the 2-by-2 block (INFO:INFO+1) does not have a complex */
- /* eigenvalue. */
- /* Further Details */
- /* =============== */
- /* Allocation of workspace: */
- /* ---------- -- --------- */
- /* WORK( j ) = 1-norm of j-th column of A, above the diagonal */
- /* WORK( N+j ) = 1-norm of j-th column of B, above the diagonal */
- /* WORK( 2*N+1:3*N ) = real part of eigenvector */
- /* WORK( 3*N+1:4*N ) = imaginary part of eigenvector */
- /* WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector */
- /* WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector */
- /* Rowwise vs. columnwise solution methods: */
- /* ------- -- ---------- -------- ------- */
- /* Finding a generalized eigenvector consists basically of solving the */
- /* singular triangular system */
- /* (A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left) */
- /* Consider finding the i-th right eigenvector (assume all eigenvalues */
- /* are real). The equation to be solved is: */
- /* n i */
- /* 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1 */
- /* k=j k=j */
- /* where C = (A - w B) (The components v(i+1:n) are 0.) */
- /* The "rowwise" method is: */
- /* (1) v(i) := 1 */
- /* for j = i-1,. . .,1: */
- /* i */
- /* (2) compute s = - sum C(j,k) v(k) and */
- /* k=j+1 */
- /* (3) v(j) := s / C(j,j) */
- /* Step 2 is sometimes called the "dot product" step, since it is an */
- /* inner product between the j-th row and the portion of the eigenvector */
- /* that has been computed so far. */
- /* The "columnwise" method consists basically in doing the sums */
- /* for all the rows in parallel. As each v(j) is computed, the */
- /* contribution of v(j) times the j-th column of C is added to the */
- /* partial sums. Since FORTRAN arrays are stored columnwise, this has */
- /* the advantage that at each step, the elements of C that are accessed */
- /* are adjacent to one another, whereas with the rowwise method, the */
- /* elements accessed at a step are spaced LDS (and LDP) words apart. */
- /* When finding left eigenvectors, the matrix in question is the */
- /* transpose of the one in storage, so the rowwise method then */
- /* actually accesses columns of A and B at each step, and so is the */
- /* preferred method. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode and Test the input parameters */
- /* Parameter adjustments */
- --select;
- s_dim1 = *lds;
- s_offset = 1 + s_dim1;
- s -= s_offset;
- p_dim1 = *ldp;
- p_offset = 1 + p_dim1;
- p -= p_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1;
- vr -= vr_offset;
- --work;
- /* Function Body */
- if (_starpu_lsame_(howmny, "A")) {
- ihwmny = 1;
- ilall = TRUE_;
- ilback = FALSE_;
- } else if (_starpu_lsame_(howmny, "S")) {
- ihwmny = 2;
- ilall = FALSE_;
- ilback = FALSE_;
- } else if (_starpu_lsame_(howmny, "B")) {
- ihwmny = 3;
- ilall = TRUE_;
- ilback = TRUE_;
- } else {
- ihwmny = -1;
- ilall = TRUE_;
- }
- if (_starpu_lsame_(side, "R")) {
- iside = 1;
- compl = FALSE_;
- compr = TRUE_;
- } else if (_starpu_lsame_(side, "L")) {
- iside = 2;
- compl = TRUE_;
- compr = FALSE_;
- } else if (_starpu_lsame_(side, "B")) {
- iside = 3;
- compl = TRUE_;
- compr = TRUE_;
- } else {
- iside = -1;
- }
- *info = 0;
- if (iside < 0) {
- *info = -1;
- } else if (ihwmny < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*lds < max(1,*n)) {
- *info = -6;
- } else if (*ldp < max(1,*n)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTGEVC", &i__1);
- return 0;
- }
- /* Count the number of eigenvectors to be computed */
- if (! ilall) {
- im = 0;
- ilcplx = FALSE_;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (ilcplx) {
- ilcplx = FALSE_;
- goto L10;
- }
- if (j < *n) {
- if (s[j + 1 + j * s_dim1] != 0.) {
- ilcplx = TRUE_;
- }
- }
- if (ilcplx) {
- if (select[j] || select[j + 1]) {
- im += 2;
- }
- } else {
- if (select[j]) {
- ++im;
- }
- }
- L10:
- ;
- }
- } else {
- im = *n;
- }
- /* Check 2-by-2 diagonal blocks of A, B */
- ilabad = FALSE_;
- ilbbad = FALSE_;
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- if (s[j + 1 + j * s_dim1] != 0.) {
- if (p[j + j * p_dim1] == 0. || p[j + 1 + (j + 1) * p_dim1] == 0.
- || p[j + (j + 1) * p_dim1] != 0.) {
- ilbbad = TRUE_;
- }
- if (j < *n - 1) {
- if (s[j + 2 + (j + 1) * s_dim1] != 0.) {
- ilabad = TRUE_;
- }
- }
- }
- /* L20: */
- }
- if (ilabad) {
- *info = -5;
- } else if (ilbbad) {
- *info = -7;
- } else if (compl && *ldvl < *n || *ldvl < 1) {
- *info = -10;
- } else if (compr && *ldvr < *n || *ldvr < 1) {
- *info = -12;
- } else if (*mm < im) {
- *info = -13;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTGEVC", &i__1);
- return 0;
- }
- /* Quick return if possible */
- *m = im;
- if (*n == 0) {
- return 0;
- }
- /* Machine Constants */
- safmin = _starpu_dlamch_("Safe minimum");
- big = 1. / safmin;
- _starpu_dlabad_(&safmin, &big);
- ulp = _starpu_dlamch_("Epsilon") * _starpu_dlamch_("Base");
- small = safmin * *n / ulp;
- big = 1. / small;
- bignum = 1. / (safmin * *n);
- /* Compute the 1-norm of each column of the strictly upper triangular */
- /* part (i.e., excluding all elements belonging to the diagonal */
- /* blocks) of A and B to check for possible overflow in the */
- /* triangular solver. */
- anorm = (d__1 = s[s_dim1 + 1], abs(d__1));
- if (*n > 1) {
- anorm += (d__1 = s[s_dim1 + 2], abs(d__1));
- }
- bnorm = (d__1 = p[p_dim1 + 1], abs(d__1));
- work[1] = 0.;
- work[*n + 1] = 0.;
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- temp = 0.;
- temp2 = 0.;
- if (s[j + (j - 1) * s_dim1] == 0.) {
- iend = j - 1;
- } else {
- iend = j - 2;
- }
- i__2 = iend;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp += (d__1 = s[i__ + j * s_dim1], abs(d__1));
- temp2 += (d__1 = p[i__ + j * p_dim1], abs(d__1));
- /* L30: */
- }
- work[j] = temp;
- work[*n + j] = temp2;
- /* Computing MIN */
- i__3 = j + 1;
- i__2 = min(i__3,*n);
- for (i__ = iend + 1; i__ <= i__2; ++i__) {
- temp += (d__1 = s[i__ + j * s_dim1], abs(d__1));
- temp2 += (d__1 = p[i__ + j * p_dim1], abs(d__1));
- /* L40: */
- }
- anorm = max(anorm,temp);
- bnorm = max(bnorm,temp2);
- /* L50: */
- }
- ascale = 1. / max(anorm,safmin);
- bscale = 1. / max(bnorm,safmin);
- /* Left eigenvectors */
- if (compl) {
- ieig = 0;
- /* Main loop over eigenvalues */
- ilcplx = FALSE_;
- i__1 = *n;
- for (je = 1; je <= i__1; ++je) {
- /* Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or */
- /* (b) this would be the second of a complex pair. */
- /* Check for complex eigenvalue, so as to be sure of which */
- /* entry(-ies) of SELECT to look at. */
- if (ilcplx) {
- ilcplx = FALSE_;
- goto L220;
- }
- nw = 1;
- if (je < *n) {
- if (s[je + 1 + je * s_dim1] != 0.) {
- ilcplx = TRUE_;
- nw = 2;
- }
- }
- if (ilall) {
- ilcomp = TRUE_;
- } else if (ilcplx) {
- ilcomp = select[je] || select[je + 1];
- } else {
- ilcomp = select[je];
- }
- if (! ilcomp) {
- goto L220;
- }
- /* Decide if (a) singular pencil, (b) real eigenvalue, or */
- /* (c) complex eigenvalue. */
- if (! ilcplx) {
- if ((d__1 = s[je + je * s_dim1], abs(d__1)) <= safmin && (
- d__2 = p[je + je * p_dim1], abs(d__2)) <= safmin) {
- /* Singular matrix pencil -- return unit eigenvector */
- ++ieig;
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vl[jr + ieig * vl_dim1] = 0.;
- /* L60: */
- }
- vl[ieig + ieig * vl_dim1] = 1.;
- goto L220;
- }
- }
- /* Clear vector */
- i__2 = nw * *n;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(*n << 1) + jr] = 0.;
- /* L70: */
- }
- /* T */
- /* Compute coefficients in ( a A - b B ) y = 0 */
- /* a is ACOEF */
- /* b is BCOEFR + i*BCOEFI */
- if (! ilcplx) {
- /* Real eigenvalue */
- /* Computing MAX */
- d__3 = (d__1 = s[je + je * s_dim1], abs(d__1)) * ascale, d__4
- = (d__2 = p[je + je * p_dim1], abs(d__2)) * bscale,
- d__3 = max(d__3,d__4);
- temp = 1. / max(d__3,safmin);
- salfar = temp * s[je + je * s_dim1] * ascale;
- sbeta = temp * p[je + je * p_dim1] * bscale;
- acoef = sbeta * ascale;
- bcoefr = salfar * bscale;
- bcoefi = 0.;
- /* Scale to avoid underflow */
- scale = 1.;
- lsa = abs(sbeta) >= safmin && abs(acoef) < small;
- lsb = abs(salfar) >= safmin && abs(bcoefr) < small;
- if (lsa) {
- scale = small / abs(sbeta) * min(anorm,big);
- }
- if (lsb) {
- /* Computing MAX */
- d__1 = scale, d__2 = small / abs(salfar) * min(bnorm,big);
- scale = max(d__1,d__2);
- }
- if (lsa || lsb) {
- /* Computing MIN */
- /* Computing MAX */
- d__3 = 1., d__4 = abs(acoef), d__3 = max(d__3,d__4), d__4
- = abs(bcoefr);
- d__1 = scale, d__2 = 1. / (safmin * max(d__3,d__4));
- scale = min(d__1,d__2);
- if (lsa) {
- acoef = ascale * (scale * sbeta);
- } else {
- acoef = scale * acoef;
- }
- if (lsb) {
- bcoefr = bscale * (scale * salfar);
- } else {
- bcoefr = scale * bcoefr;
- }
- }
- acoefa = abs(acoef);
- bcoefa = abs(bcoefr);
- /* First component is 1 */
- work[(*n << 1) + je] = 1.;
- xmax = 1.;
- } else {
- /* Complex eigenvalue */
- d__1 = safmin * 100.;
- _starpu_dlag2_(&s[je + je * s_dim1], lds, &p[je + je * p_dim1], ldp, &
- d__1, &acoef, &temp, &bcoefr, &temp2, &bcoefi);
- bcoefi = -bcoefi;
- if (bcoefi == 0.) {
- *info = je;
- return 0;
- }
- /* Scale to avoid over/underflow */
- acoefa = abs(acoef);
- bcoefa = abs(bcoefr) + abs(bcoefi);
- scale = 1.;
- if (acoefa * ulp < safmin && acoefa >= safmin) {
- scale = safmin / ulp / acoefa;
- }
- if (bcoefa * ulp < safmin && bcoefa >= safmin) {
- /* Computing MAX */
- d__1 = scale, d__2 = safmin / ulp / bcoefa;
- scale = max(d__1,d__2);
- }
- if (safmin * acoefa > ascale) {
- scale = ascale / (safmin * acoefa);
- }
- if (safmin * bcoefa > bscale) {
- /* Computing MIN */
- d__1 = scale, d__2 = bscale / (safmin * bcoefa);
- scale = min(d__1,d__2);
- }
- if (scale != 1.) {
- acoef = scale * acoef;
- acoefa = abs(acoef);
- bcoefr = scale * bcoefr;
- bcoefi = scale * bcoefi;
- bcoefa = abs(bcoefr) + abs(bcoefi);
- }
- /* Compute first two components of eigenvector */
- temp = acoef * s[je + 1 + je * s_dim1];
- temp2r = acoef * s[je + je * s_dim1] - bcoefr * p[je + je *
- p_dim1];
- temp2i = -bcoefi * p[je + je * p_dim1];
- if (abs(temp) > abs(temp2r) + abs(temp2i)) {
- work[(*n << 1) + je] = 1.;
- work[*n * 3 + je] = 0.;
- work[(*n << 1) + je + 1] = -temp2r / temp;
- work[*n * 3 + je + 1] = -temp2i / temp;
- } else {
- work[(*n << 1) + je + 1] = 1.;
- work[*n * 3 + je + 1] = 0.;
- temp = acoef * s[je + (je + 1) * s_dim1];
- work[(*n << 1) + je] = (bcoefr * p[je + 1 + (je + 1) *
- p_dim1] - acoef * s[je + 1 + (je + 1) * s_dim1]) /
- temp;
- work[*n * 3 + je] = bcoefi * p[je + 1 + (je + 1) * p_dim1]
- / temp;
- }
- /* Computing MAX */
- d__5 = (d__1 = work[(*n << 1) + je], abs(d__1)) + (d__2 =
- work[*n * 3 + je], abs(d__2)), d__6 = (d__3 = work[(*
- n << 1) + je + 1], abs(d__3)) + (d__4 = work[*n * 3 +
- je + 1], abs(d__4));
- xmax = max(d__5,d__6);
- }
- /* Computing MAX */
- d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, d__1 =
- max(d__1,d__2);
- dmin__ = max(d__1,safmin);
- /* T */
- /* Triangular solve of (a A - b B) y = 0 */
- /* T */
- /* (rowwise in (a A - b B) , or columnwise in (a A - b B) ) */
- il2by2 = FALSE_;
- i__2 = *n;
- for (j = je + nw; j <= i__2; ++j) {
- if (il2by2) {
- il2by2 = FALSE_;
- goto L160;
- }
- na = 1;
- bdiag[0] = p[j + j * p_dim1];
- if (j < *n) {
- if (s[j + 1 + j * s_dim1] != 0.) {
- il2by2 = TRUE_;
- bdiag[1] = p[j + 1 + (j + 1) * p_dim1];
- na = 2;
- }
- }
- /* Check whether scaling is necessary for dot products */
- xscale = 1. / max(1.,xmax);
- /* Computing MAX */
- d__1 = work[j], d__2 = work[*n + j], d__1 = max(d__1,d__2),
- d__2 = acoefa * work[j] + bcoefa * work[*n + j];
- temp = max(d__1,d__2);
- if (il2by2) {
- /* Computing MAX */
- d__1 = temp, d__2 = work[j + 1], d__1 = max(d__1,d__2),
- d__2 = work[*n + j + 1], d__1 = max(d__1,d__2),
- d__2 = acoefa * work[j + 1] + bcoefa * work[*n +
- j + 1];
- temp = max(d__1,d__2);
- }
- if (temp > bignum * xscale) {
- i__3 = nw - 1;
- for (jw = 0; jw <= i__3; ++jw) {
- i__4 = j - 1;
- for (jr = je; jr <= i__4; ++jr) {
- work[(jw + 2) * *n + jr] = xscale * work[(jw + 2)
- * *n + jr];
- /* L80: */
- }
- /* L90: */
- }
- xmax *= xscale;
- }
- /* Compute dot products */
- /* j-1 */
- /* SUM = sum conjg( a*S(k,j) - b*P(k,j) )*x(k) */
- /* k=je */
- /* To reduce the op count, this is done as */
- /* _ j-1 _ j-1 */
- /* a*conjg( sum S(k,j)*x(k) ) - b*conjg( sum P(k,j)*x(k) ) */
- /* k=je k=je */
- /* which may cause underflow problems if A or B are close */
- /* to underflow. (E.g., less than SMALL.) */
- /* A series of compiler directives to defeat vectorization */
- /* for the next loop */
- /* $PL$ CMCHAR=' ' */
- /* DIR$ NEXTSCALAR */
- /* $DIR SCALAR */
- /* DIR$ NEXT SCALAR */
- /* VD$L NOVECTOR */
- /* DEC$ NOVECTOR */
- /* VD$ NOVECTOR */
- /* VDIR NOVECTOR */
- /* VOCL LOOP,SCALAR */
- /* IBM PREFER SCALAR */
- /* $PL$ CMCHAR='*' */
- i__3 = nw;
- for (jw = 1; jw <= i__3; ++jw) {
- /* $PL$ CMCHAR=' ' */
- /* DIR$ NEXTSCALAR */
- /* $DIR SCALAR */
- /* DIR$ NEXT SCALAR */
- /* VD$L NOVECTOR */
- /* DEC$ NOVECTOR */
- /* VD$ NOVECTOR */
- /* VDIR NOVECTOR */
- /* VOCL LOOP,SCALAR */
- /* IBM PREFER SCALAR */
- /* $PL$ CMCHAR='*' */
- i__4 = na;
- for (ja = 1; ja <= i__4; ++ja) {
- sums[ja + (jw << 1) - 3] = 0.;
- sump[ja + (jw << 1) - 3] = 0.;
- i__5 = j - 1;
- for (jr = je; jr <= i__5; ++jr) {
- sums[ja + (jw << 1) - 3] += s[jr + (j + ja - 1) *
- s_dim1] * work[(jw + 1) * *n + jr];
- sump[ja + (jw << 1) - 3] += p[jr + (j + ja - 1) *
- p_dim1] * work[(jw + 1) * *n + jr];
- /* L100: */
- }
- /* L110: */
- }
- /* L120: */
- }
- /* $PL$ CMCHAR=' ' */
- /* DIR$ NEXTSCALAR */
- /* $DIR SCALAR */
- /* DIR$ NEXT SCALAR */
- /* VD$L NOVECTOR */
- /* DEC$ NOVECTOR */
- /* VD$ NOVECTOR */
- /* VDIR NOVECTOR */
- /* VOCL LOOP,SCALAR */
- /* IBM PREFER SCALAR */
- /* $PL$ CMCHAR='*' */
- i__3 = na;
- for (ja = 1; ja <= i__3; ++ja) {
- if (ilcplx) {
- sum[ja - 1] = -acoef * sums[ja - 1] + bcoefr * sump[
- ja - 1] - bcoefi * sump[ja + 1];
- sum[ja + 1] = -acoef * sums[ja + 1] + bcoefr * sump[
- ja + 1] + bcoefi * sump[ja - 1];
- } else {
- sum[ja - 1] = -acoef * sums[ja - 1] + bcoefr * sump[
- ja - 1];
- }
- /* L130: */
- }
- /* T */
- /* Solve ( a A - b B ) y = SUM(,) */
- /* with scaling and perturbation of the denominator */
- _starpu_dlaln2_(&c_true, &na, &nw, &dmin__, &acoef, &s[j + j * s_dim1]
- , lds, bdiag, &bdiag[1], sum, &c__2, &bcoefr, &bcoefi,
- &work[(*n << 1) + j], n, &scale, &temp, &iinfo);
- if (scale < 1.) {
- i__3 = nw - 1;
- for (jw = 0; jw <= i__3; ++jw) {
- i__4 = j - 1;
- for (jr = je; jr <= i__4; ++jr) {
- work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *
- *n + jr];
- /* L140: */
- }
- /* L150: */
- }
- xmax = scale * xmax;
- }
- xmax = max(xmax,temp);
- L160:
- ;
- }
- /* Copy eigenvector to VL, back transforming if */
- /* HOWMNY='B'. */
- ++ieig;
- if (ilback) {
- i__2 = nw - 1;
- for (jw = 0; jw <= i__2; ++jw) {
- i__3 = *n + 1 - je;
- _starpu_dgemv_("N", n, &i__3, &c_b34, &vl[je * vl_dim1 + 1], ldvl,
- &work[(jw + 2) * *n + je], &c__1, &c_b36, &work[(
- jw + 4) * *n + 1], &c__1);
- /* L170: */
- }
- _starpu_dlacpy_(" ", n, &nw, &work[(*n << 2) + 1], n, &vl[je *
- vl_dim1 + 1], ldvl);
- ibeg = 1;
- } else {
- _starpu_dlacpy_(" ", n, &nw, &work[(*n << 1) + 1], n, &vl[ieig *
- vl_dim1 + 1], ldvl);
- ibeg = je;
- }
- /* Scale eigenvector */
- xmax = 0.;
- if (ilcplx) {
- i__2 = *n;
- for (j = ibeg; j <= i__2; ++j) {
- /* Computing MAX */
- d__3 = xmax, d__4 = (d__1 = vl[j + ieig * vl_dim1], abs(
- d__1)) + (d__2 = vl[j + (ieig + 1) * vl_dim1],
- abs(d__2));
- xmax = max(d__3,d__4);
- /* L180: */
- }
- } else {
- i__2 = *n;
- for (j = ibeg; j <= i__2; ++j) {
- /* Computing MAX */
- d__2 = xmax, d__3 = (d__1 = vl[j + ieig * vl_dim1], abs(
- d__1));
- xmax = max(d__2,d__3);
- /* L190: */
- }
- }
- if (xmax > safmin) {
- xscale = 1. / xmax;
- i__2 = nw - 1;
- for (jw = 0; jw <= i__2; ++jw) {
- i__3 = *n;
- for (jr = ibeg; jr <= i__3; ++jr) {
- vl[jr + (ieig + jw) * vl_dim1] = xscale * vl[jr + (
- ieig + jw) * vl_dim1];
- /* L200: */
- }
- /* L210: */
- }
- }
- ieig = ieig + nw - 1;
- L220:
- ;
- }
- }
- /* Right eigenvectors */
- if (compr) {
- ieig = im + 1;
- /* Main loop over eigenvalues */
- ilcplx = FALSE_;
- for (je = *n; je >= 1; --je) {
- /* Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or */
- /* (b) this would be the second of a complex pair. */
- /* Check for complex eigenvalue, so as to be sure of which */
- /* entry(-ies) of SELECT to look at -- if complex, SELECT(JE) */
- /* or SELECT(JE-1). */
- /* If this is a complex pair, the 2-by-2 diagonal block */
- /* corresponding to the eigenvalue is in rows/columns JE-1:JE */
- if (ilcplx) {
- ilcplx = FALSE_;
- goto L500;
- }
- nw = 1;
- if (je > 1) {
- if (s[je + (je - 1) * s_dim1] != 0.) {
- ilcplx = TRUE_;
- nw = 2;
- }
- }
- if (ilall) {
- ilcomp = TRUE_;
- } else if (ilcplx) {
- ilcomp = select[je] || select[je - 1];
- } else {
- ilcomp = select[je];
- }
- if (! ilcomp) {
- goto L500;
- }
- /* Decide if (a) singular pencil, (b) real eigenvalue, or */
- /* (c) complex eigenvalue. */
- if (! ilcplx) {
- if ((d__1 = s[je + je * s_dim1], abs(d__1)) <= safmin && (
- d__2 = p[je + je * p_dim1], abs(d__2)) <= safmin) {
- /* Singular matrix pencil -- unit eigenvector */
- --ieig;
- i__1 = *n;
- for (jr = 1; jr <= i__1; ++jr) {
- vr[jr + ieig * vr_dim1] = 0.;
- /* L230: */
- }
- vr[ieig + ieig * vr_dim1] = 1.;
- goto L500;
- }
- }
- /* Clear vector */
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(jw + 2) * *n + jr] = 0.;
- /* L240: */
- }
- /* L250: */
- }
- /* Compute coefficients in ( a A - b B ) x = 0 */
- /* a is ACOEF */
- /* b is BCOEFR + i*BCOEFI */
- if (! ilcplx) {
- /* Real eigenvalue */
- /* Computing MAX */
- d__3 = (d__1 = s[je + je * s_dim1], abs(d__1)) * ascale, d__4
- = (d__2 = p[je + je * p_dim1], abs(d__2)) * bscale,
- d__3 = max(d__3,d__4);
- temp = 1. / max(d__3,safmin);
- salfar = temp * s[je + je * s_dim1] * ascale;
- sbeta = temp * p[je + je * p_dim1] * bscale;
- acoef = sbeta * ascale;
- bcoefr = salfar * bscale;
- bcoefi = 0.;
- /* Scale to avoid underflow */
- scale = 1.;
- lsa = abs(sbeta) >= safmin && abs(acoef) < small;
- lsb = abs(salfar) >= safmin && abs(bcoefr) < small;
- if (lsa) {
- scale = small / abs(sbeta) * min(anorm,big);
- }
- if (lsb) {
- /* Computing MAX */
- d__1 = scale, d__2 = small / abs(salfar) * min(bnorm,big);
- scale = max(d__1,d__2);
- }
- if (lsa || lsb) {
- /* Computing MIN */
- /* Computing MAX */
- d__3 = 1., d__4 = abs(acoef), d__3 = max(d__3,d__4), d__4
- = abs(bcoefr);
- d__1 = scale, d__2 = 1. / (safmin * max(d__3,d__4));
- scale = min(d__1,d__2);
- if (lsa) {
- acoef = ascale * (scale * sbeta);
- } else {
- acoef = scale * acoef;
- }
- if (lsb) {
- bcoefr = bscale * (scale * salfar);
- } else {
- bcoefr = scale * bcoefr;
- }
- }
- acoefa = abs(acoef);
- bcoefa = abs(bcoefr);
- /* First component is 1 */
- work[(*n << 1) + je] = 1.;
- xmax = 1.;
- /* Compute contribution from column JE of A and B to sum */
- /* (See "Further Details", above.) */
- i__1 = je - 1;
- for (jr = 1; jr <= i__1; ++jr) {
- work[(*n << 1) + jr] = bcoefr * p[jr + je * p_dim1] -
- acoef * s[jr + je * s_dim1];
- /* L260: */
- }
- } else {
- /* Complex eigenvalue */
- d__1 = safmin * 100.;
- _starpu_dlag2_(&s[je - 1 + (je - 1) * s_dim1], lds, &p[je - 1 + (je -
- 1) * p_dim1], ldp, &d__1, &acoef, &temp, &bcoefr, &
- temp2, &bcoefi);
- if (bcoefi == 0.) {
- *info = je - 1;
- return 0;
- }
- /* Scale to avoid over/underflow */
- acoefa = abs(acoef);
- bcoefa = abs(bcoefr) + abs(bcoefi);
- scale = 1.;
- if (acoefa * ulp < safmin && acoefa >= safmin) {
- scale = safmin / ulp / acoefa;
- }
- if (bcoefa * ulp < safmin && bcoefa >= safmin) {
- /* Computing MAX */
- d__1 = scale, d__2 = safmin / ulp / bcoefa;
- scale = max(d__1,d__2);
- }
- if (safmin * acoefa > ascale) {
- scale = ascale / (safmin * acoefa);
- }
- if (safmin * bcoefa > bscale) {
- /* Computing MIN */
- d__1 = scale, d__2 = bscale / (safmin * bcoefa);
- scale = min(d__1,d__2);
- }
- if (scale != 1.) {
- acoef = scale * acoef;
- acoefa = abs(acoef);
- bcoefr = scale * bcoefr;
- bcoefi = scale * bcoefi;
- bcoefa = abs(bcoefr) + abs(bcoefi);
- }
- /* Compute first two components of eigenvector */
- /* and contribution to sums */
- temp = acoef * s[je + (je - 1) * s_dim1];
- temp2r = acoef * s[je + je * s_dim1] - bcoefr * p[je + je *
- p_dim1];
- temp2i = -bcoefi * p[je + je * p_dim1];
- if (abs(temp) >= abs(temp2r) + abs(temp2i)) {
- work[(*n << 1) + je] = 1.;
- work[*n * 3 + je] = 0.;
- work[(*n << 1) + je - 1] = -temp2r / temp;
- work[*n * 3 + je - 1] = -temp2i / temp;
- } else {
- work[(*n << 1) + je - 1] = 1.;
- work[*n * 3 + je - 1] = 0.;
- temp = acoef * s[je - 1 + je * s_dim1];
- work[(*n << 1) + je] = (bcoefr * p[je - 1 + (je - 1) *
- p_dim1] - acoef * s[je - 1 + (je - 1) * s_dim1]) /
- temp;
- work[*n * 3 + je] = bcoefi * p[je - 1 + (je - 1) * p_dim1]
- / temp;
- }
- /* Computing MAX */
- d__5 = (d__1 = work[(*n << 1) + je], abs(d__1)) + (d__2 =
- work[*n * 3 + je], abs(d__2)), d__6 = (d__3 = work[(*
- n << 1) + je - 1], abs(d__3)) + (d__4 = work[*n * 3 +
- je - 1], abs(d__4));
- xmax = max(d__5,d__6);
- /* Compute contribution from columns JE and JE-1 */
- /* of A and B to the sums. */
- creala = acoef * work[(*n << 1) + je - 1];
- cimaga = acoef * work[*n * 3 + je - 1];
- crealb = bcoefr * work[(*n << 1) + je - 1] - bcoefi * work[*n
- * 3 + je - 1];
- cimagb = bcoefi * work[(*n << 1) + je - 1] + bcoefr * work[*n
- * 3 + je - 1];
- cre2a = acoef * work[(*n << 1) + je];
- cim2a = acoef * work[*n * 3 + je];
- cre2b = bcoefr * work[(*n << 1) + je] - bcoefi * work[*n * 3
- + je];
- cim2b = bcoefi * work[(*n << 1) + je] + bcoefr * work[*n * 3
- + je];
- i__1 = je - 2;
- for (jr = 1; jr <= i__1; ++jr) {
- work[(*n << 1) + jr] = -creala * s[jr + (je - 1) * s_dim1]
- + crealb * p[jr + (je - 1) * p_dim1] - cre2a * s[
- jr + je * s_dim1] + cre2b * p[jr + je * p_dim1];
- work[*n * 3 + jr] = -cimaga * s[jr + (je - 1) * s_dim1] +
- cimagb * p[jr + (je - 1) * p_dim1] - cim2a * s[jr
- + je * s_dim1] + cim2b * p[jr + je * p_dim1];
- /* L270: */
- }
- }
- /* Computing MAX */
- d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, d__1 =
- max(d__1,d__2);
- dmin__ = max(d__1,safmin);
- /* Columnwise triangular solve of (a A - b B) x = 0 */
- il2by2 = FALSE_;
- for (j = je - nw; j >= 1; --j) {
- /* If a 2-by-2 block, is in position j-1:j, wait until */
- /* next iteration to process it (when it will be j:j+1) */
- if (! il2by2 && j > 1) {
- if (s[j + (j - 1) * s_dim1] != 0.) {
- il2by2 = TRUE_;
- goto L370;
- }
- }
- bdiag[0] = p[j + j * p_dim1];
- if (il2by2) {
- na = 2;
- bdiag[1] = p[j + 1 + (j + 1) * p_dim1];
- } else {
- na = 1;
- }
- /* Compute x(j) (and x(j+1), if 2-by-2 block) */
- _starpu_dlaln2_(&c_false, &na, &nw, &dmin__, &acoef, &s[j + j *
- s_dim1], lds, bdiag, &bdiag[1], &work[(*n << 1) + j],
- n, &bcoefr, &bcoefi, sum, &c__2, &scale, &temp, &
- iinfo);
- if (scale < 1.) {
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = je;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *
- *n + jr];
- /* L280: */
- }
- /* L290: */
- }
- }
- /* Computing MAX */
- d__1 = scale * xmax;
- xmax = max(d__1,temp);
- i__1 = nw;
- for (jw = 1; jw <= i__1; ++jw) {
- i__2 = na;
- for (ja = 1; ja <= i__2; ++ja) {
- work[(jw + 1) * *n + j + ja - 1] = sum[ja + (jw << 1)
- - 3];
- /* L300: */
- }
- /* L310: */
- }
- /* w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling */
- if (j > 1) {
- /* Check whether scaling is necessary for sum. */
- xscale = 1. / max(1.,xmax);
- temp = acoefa * work[j] + bcoefa * work[*n + j];
- if (il2by2) {
- /* Computing MAX */
- d__1 = temp, d__2 = acoefa * work[j + 1] + bcoefa *
- work[*n + j + 1];
- temp = max(d__1,d__2);
- }
- /* Computing MAX */
- d__1 = max(temp,acoefa);
- temp = max(d__1,bcoefa);
- if (temp > bignum * xscale) {
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = je;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(jw + 2) * *n + jr] = xscale * work[(jw
- + 2) * *n + jr];
- /* L320: */
- }
- /* L330: */
- }
- xmax *= xscale;
- }
- /* Compute the contributions of the off-diagonals of */
- /* column j (and j+1, if 2-by-2 block) of A and B to the */
- /* sums. */
- i__1 = na;
- for (ja = 1; ja <= i__1; ++ja) {
- if (ilcplx) {
- creala = acoef * work[(*n << 1) + j + ja - 1];
- cimaga = acoef * work[*n * 3 + j + ja - 1];
- crealb = bcoefr * work[(*n << 1) + j + ja - 1] -
- bcoefi * work[*n * 3 + j + ja - 1];
- cimagb = bcoefi * work[(*n << 1) + j + ja - 1] +
- bcoefr * work[*n * 3 + j + ja - 1];
- i__2 = j - 1;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(*n << 1) + jr] = work[(*n << 1) + jr] -
- creala * s[jr + (j + ja - 1) * s_dim1]
- + crealb * p[jr + (j + ja - 1) *
- p_dim1];
- work[*n * 3 + jr] = work[*n * 3 + jr] -
- cimaga * s[jr + (j + ja - 1) * s_dim1]
- + cimagb * p[jr + (j + ja - 1) *
- p_dim1];
- /* L340: */
- }
- } else {
- creala = acoef * work[(*n << 1) + j + ja - 1];
- crealb = bcoefr * work[(*n << 1) + j + ja - 1];
- i__2 = j - 1;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(*n << 1) + jr] = work[(*n << 1) + jr] -
- creala * s[jr + (j + ja - 1) * s_dim1]
- + crealb * p[jr + (j + ja - 1) *
- p_dim1];
- /* L350: */
- }
- }
- /* L360: */
- }
- }
- il2by2 = FALSE_;
- L370:
- ;
- }
- /* Copy eigenvector to VR, back transforming if */
- /* HOWMNY='B'. */
- ieig -= nw;
- if (ilback) {
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(jw + 4) * *n + jr] = work[(jw + 2) * *n + 1] *
- vr[jr + vr_dim1];
- /* L380: */
- }
- /* A series of compiler directives to defeat */
- /* vectorization for the next loop */
- i__2 = je;
- for (jc = 2; jc <= i__2; ++jc) {
- i__3 = *n;
- for (jr = 1; jr <= i__3; ++jr) {
- work[(jw + 4) * *n + jr] += work[(jw + 2) * *n +
- jc] * vr[jr + jc * vr_dim1];
- /* L390: */
- }
- /* L400: */
- }
- /* L410: */
- }
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + (ieig + jw) * vr_dim1] = work[(jw + 4) * *n +
- jr];
- /* L420: */
- }
- /* L430: */
- }
- iend = *n;
- } else {
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + (ieig + jw) * vr_dim1] = work[(jw + 2) * *n +
- jr];
- /* L440: */
- }
- /* L450: */
- }
- iend = je;
- }
- /* Scale eigenvector */
- xmax = 0.;
- if (ilcplx) {
- i__1 = iend;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- d__3 = xmax, d__4 = (d__1 = vr[j + ieig * vr_dim1], abs(
- d__1)) + (d__2 = vr[j + (ieig + 1) * vr_dim1],
- abs(d__2));
- xmax = max(d__3,d__4);
- /* L460: */
- }
- } else {
- i__1 = iend;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- d__2 = xmax, d__3 = (d__1 = vr[j + ieig * vr_dim1], abs(
- d__1));
- xmax = max(d__2,d__3);
- /* L470: */
- }
- }
- if (xmax > safmin) {
- xscale = 1. / xmax;
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = iend;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + (ieig + jw) * vr_dim1] = xscale * vr[jr + (
- ieig + jw) * vr_dim1];
- /* L480: */
- }
- /* L490: */
- }
- }
- L500:
- ;
- }
- }
- return 0;
- /* End of DTGEVC */
- } /* _starpu_dtgevc_ */
|