123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515 |
- /* dtfttp.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dtfttp_(char *transr, char *uplo, integer *n, doublereal
- *arf, doublereal *ap, integer *info)
- {
- /* System generated locals */
- integer i__1, i__2, i__3;
- /* Local variables */
- integer i__, j, k, n1, n2, ij, jp, js, nt, lda, ijp;
- logical normaltransr;
- extern logical _starpu_lsame_(char *, char *);
- logical lower;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- logical nisodd;
- /* -- LAPACK routine (version 3.2) -- */
- /* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
- /* -- November 2008 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* .. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTFTTP copies a triangular matrix A from rectangular full packed */
- /* format (TF) to standard packed format (TP). */
- /* Arguments */
- /* ========= */
- /* TRANSR (input) CHARACTER */
- /* = 'N': ARF is in Normal format; */
- /* = 'T': ARF is in Transpose format; */
- /* UPLO (input) CHARACTER */
- /* = 'U': A is upper triangular; */
- /* = 'L': A is lower triangular. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* ARF (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), */
- /* On entry, the upper or lower triangular matrix A stored in */
- /* RFP format. For a further discussion see Notes below. */
- /* AP (output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), */
- /* On exit, the upper or lower triangular matrix A, packed */
- /* columnwise in a linear array. The j-th column of A is stored */
- /* in the array AP as follows: */
- /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
- /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Notes */
- /* ===== */
- /* We first consider Rectangular Full Packed (RFP) Format when N is */
- /* even. We give an example where N = 6. */
- /* AP is Upper AP is Lower */
- /* 00 01 02 03 04 05 00 */
- /* 11 12 13 14 15 10 11 */
- /* 22 23 24 25 20 21 22 */
- /* 33 34 35 30 31 32 33 */
- /* 44 45 40 41 42 43 44 */
- /* 55 50 51 52 53 54 55 */
- /* Let TRANSR = 'N'. RFP holds AP as follows: */
- /* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
- /* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
- /* the transpose of the first three columns of AP upper. */
- /* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
- /* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
- /* the transpose of the last three columns of AP lower. */
- /* This covers the case N even and TRANSR = 'N'. */
- /* RFP A RFP A */
- /* 03 04 05 33 43 53 */
- /* 13 14 15 00 44 54 */
- /* 23 24 25 10 11 55 */
- /* 33 34 35 20 21 22 */
- /* 00 44 45 30 31 32 */
- /* 01 11 55 40 41 42 */
- /* 02 12 22 50 51 52 */
- /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
- /* transpose of RFP A above. One therefore gets: */
- /* RFP A RFP A */
- /* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
- /* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
- /* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
- /* We first consider Rectangular Full Packed (RFP) Format when N is */
- /* odd. We give an example where N = 5. */
- /* AP is Upper AP is Lower */
- /* 00 01 02 03 04 00 */
- /* 11 12 13 14 10 11 */
- /* 22 23 24 20 21 22 */
- /* 33 34 30 31 32 33 */
- /* 44 40 41 42 43 44 */
- /* Let TRANSR = 'N'. RFP holds AP as follows: */
- /* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
- /* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
- /* the transpose of the first two columns of AP upper. */
- /* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
- /* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
- /* the transpose of the last two columns of AP lower. */
- /* This covers the case N odd and TRANSR = 'N'. */
- /* RFP A RFP A */
- /* 02 03 04 00 33 43 */
- /* 12 13 14 10 11 44 */
- /* 22 23 24 20 21 22 */
- /* 00 33 34 30 31 32 */
- /* 01 11 44 40 41 42 */
- /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
- /* transpose of RFP A above. One therefore gets: */
- /* RFP A RFP A */
- /* 02 12 22 00 01 00 10 20 30 40 50 */
- /* 03 13 23 33 11 33 11 21 31 41 51 */
- /* 04 14 24 34 44 43 44 22 32 42 52 */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- *info = 0;
- normaltransr = _starpu_lsame_(transr, "N");
- lower = _starpu_lsame_(uplo, "L");
- if (! normaltransr && ! _starpu_lsame_(transr, "T")) {
- *info = -1;
- } else if (! lower && ! _starpu_lsame_(uplo, "U")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTFTTP", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- if (normaltransr) {
- ap[0] = arf[0];
- } else {
- ap[0] = arf[0];
- }
- return 0;
- }
- /* Size of array ARF(0:NT-1) */
- nt = *n * (*n + 1) / 2;
- /* Set N1 and N2 depending on LOWER */
- if (lower) {
- n2 = *n / 2;
- n1 = *n - n2;
- } else {
- n1 = *n / 2;
- n2 = *n - n1;
- }
- /* If N is odd, set NISODD = .TRUE. */
- /* If N is even, set K = N/2 and NISODD = .FALSE. */
- /* set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe) */
- /* where noe = 0 if n is even, noe = 1 if n is odd */
- if (*n % 2 == 0) {
- k = *n / 2;
- nisodd = FALSE_;
- lda = *n + 1;
- } else {
- nisodd = TRUE_;
- lda = *n;
- }
- /* ARF^C has lda rows and n+1-noe cols */
- if (! normaltransr) {
- lda = (*n + 1) / 2;
- }
- /* start execution: there are eight cases */
- if (nisodd) {
- /* N is odd */
- if (normaltransr) {
- /* N is odd and TRANSR = 'N' */
- if (lower) {
- /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
- /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
- /* T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n */
- ijp = 0;
- jp = 0;
- i__1 = n2;
- for (j = 0; j <= i__1; ++j) {
- i__2 = *n - 1;
- for (i__ = j; i__ <= i__2; ++i__) {
- ij = i__ + jp;
- ap[ijp] = arf[ij];
- ++ijp;
- }
- jp += lda;
- }
- i__1 = n2 - 1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- i__2 = n2;
- for (j = i__ + 1; j <= i__2; ++j) {
- ij = i__ + j * lda;
- ap[ijp] = arf[ij];
- ++ijp;
- }
- }
- } else {
- /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
- /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
- /* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
- ijp = 0;
- i__1 = n1 - 1;
- for (j = 0; j <= i__1; ++j) {
- ij = n2 + j;
- i__2 = j;
- for (i__ = 0; i__ <= i__2; ++i__) {
- ap[ijp] = arf[ij];
- ++ijp;
- ij += lda;
- }
- }
- js = 0;
- i__1 = *n - 1;
- for (j = n1; j <= i__1; ++j) {
- ij = js;
- i__2 = js + j;
- for (ij = js; ij <= i__2; ++ij) {
- ap[ijp] = arf[ij];
- ++ijp;
- }
- js += lda;
- }
- }
- } else {
- /* N is odd and TRANSR = 'T' */
- if (lower) {
- /* SRPA for LOWER, TRANSPOSE and N is odd */
- /* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
- /* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */
- ijp = 0;
- i__1 = n2;
- for (i__ = 0; i__ <= i__1; ++i__) {
- i__2 = *n * lda - 1;
- i__3 = lda;
- for (ij = i__ * (lda + 1); i__3 < 0 ? ij >= i__2 : ij <=
- i__2; ij += i__3) {
- ap[ijp] = arf[ij];
- ++ijp;
- }
- }
- js = 1;
- i__1 = n2 - 1;
- for (j = 0; j <= i__1; ++j) {
- i__3 = js + n2 - j - 1;
- for (ij = js; ij <= i__3; ++ij) {
- ap[ijp] = arf[ij];
- ++ijp;
- }
- js = js + lda + 1;
- }
- } else {
- /* SRPA for UPPER, TRANSPOSE and N is odd */
- /* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
- /* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */
- ijp = 0;
- js = n2 * lda;
- i__1 = n1 - 1;
- for (j = 0; j <= i__1; ++j) {
- i__3 = js + j;
- for (ij = js; ij <= i__3; ++ij) {
- ap[ijp] = arf[ij];
- ++ijp;
- }
- js += lda;
- }
- i__1 = n1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- i__3 = i__ + (n1 + i__) * lda;
- i__2 = lda;
- for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
- i__2) {
- ap[ijp] = arf[ij];
- ++ijp;
- }
- }
- }
- }
- } else {
- /* N is even */
- if (normaltransr) {
- /* N is even and TRANSR = 'N' */
- if (lower) {
- /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
- /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
- /* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
- ijp = 0;
- jp = 0;
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- i__2 = *n - 1;
- for (i__ = j; i__ <= i__2; ++i__) {
- ij = i__ + 1 + jp;
- ap[ijp] = arf[ij];
- ++ijp;
- }
- jp += lda;
- }
- i__1 = k - 1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- i__2 = k - 1;
- for (j = i__; j <= i__2; ++j) {
- ij = i__ + j * lda;
- ap[ijp] = arf[ij];
- ++ijp;
- }
- }
- } else {
- /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
- /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
- /* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
- ijp = 0;
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- ij = k + 1 + j;
- i__2 = j;
- for (i__ = 0; i__ <= i__2; ++i__) {
- ap[ijp] = arf[ij];
- ++ijp;
- ij += lda;
- }
- }
- js = 0;
- i__1 = *n - 1;
- for (j = k; j <= i__1; ++j) {
- ij = js;
- i__2 = js + j;
- for (ij = js; ij <= i__2; ++ij) {
- ap[ijp] = arf[ij];
- ++ijp;
- }
- js += lda;
- }
- }
- } else {
- /* N is even and TRANSR = 'T' */
- if (lower) {
- /* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
- /* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
- /* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
- ijp = 0;
- i__1 = k - 1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- i__2 = (*n + 1) * lda - 1;
- i__3 = lda;
- for (ij = i__ + (i__ + 1) * lda; i__3 < 0 ? ij >= i__2 :
- ij <= i__2; ij += i__3) {
- ap[ijp] = arf[ij];
- ++ijp;
- }
- }
- js = 0;
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- i__3 = js + k - j - 1;
- for (ij = js; ij <= i__3; ++ij) {
- ap[ijp] = arf[ij];
- ++ijp;
- }
- js = js + lda + 1;
- }
- } else {
- /* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
- /* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
- /* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
- ijp = 0;
- js = (k + 1) * lda;
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- i__3 = js + j;
- for (ij = js; ij <= i__3; ++ij) {
- ap[ijp] = arf[ij];
- ++ijp;
- }
- js += lda;
- }
- i__1 = k - 1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- i__3 = i__ + (k + i__) * lda;
- i__2 = lda;
- for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
- i__2) {
- ap[ijp] = arf[ij];
- ++ijp;
- }
- }
- }
- }
- }
- return 0;
- /* End of DTFTTP */
- } /* _starpu_dtfttp_ */
|