dtfttp.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. /* dtfttp.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Subroutine */ int _starpu_dtfttp_(char *transr, char *uplo, integer *n, doublereal
  14. *arf, doublereal *ap, integer *info)
  15. {
  16. /* System generated locals */
  17. integer i__1, i__2, i__3;
  18. /* Local variables */
  19. integer i__, j, k, n1, n2, ij, jp, js, nt, lda, ijp;
  20. logical normaltransr;
  21. extern logical _starpu_lsame_(char *, char *);
  22. logical lower;
  23. extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
  24. logical nisodd;
  25. /* -- LAPACK routine (version 3.2) -- */
  26. /* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
  27. /* -- November 2008 -- */
  28. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  29. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  30. /* .. */
  31. /* .. Scalar Arguments .. */
  32. /* .. */
  33. /* .. Array Arguments .. */
  34. /* .. */
  35. /* Purpose */
  36. /* ======= */
  37. /* DTFTTP copies a triangular matrix A from rectangular full packed */
  38. /* format (TF) to standard packed format (TP). */
  39. /* Arguments */
  40. /* ========= */
  41. /* TRANSR (input) CHARACTER */
  42. /* = 'N': ARF is in Normal format; */
  43. /* = 'T': ARF is in Transpose format; */
  44. /* UPLO (input) CHARACTER */
  45. /* = 'U': A is upper triangular; */
  46. /* = 'L': A is lower triangular. */
  47. /* N (input) INTEGER */
  48. /* The order of the matrix A. N >= 0. */
  49. /* ARF (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), */
  50. /* On entry, the upper or lower triangular matrix A stored in */
  51. /* RFP format. For a further discussion see Notes below. */
  52. /* AP (output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), */
  53. /* On exit, the upper or lower triangular matrix A, packed */
  54. /* columnwise in a linear array. The j-th column of A is stored */
  55. /* in the array AP as follows: */
  56. /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  57. /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  58. /* INFO (output) INTEGER */
  59. /* = 0: successful exit */
  60. /* < 0: if INFO = -i, the i-th argument had an illegal value */
  61. /* Notes */
  62. /* ===== */
  63. /* We first consider Rectangular Full Packed (RFP) Format when N is */
  64. /* even. We give an example where N = 6. */
  65. /* AP is Upper AP is Lower */
  66. /* 00 01 02 03 04 05 00 */
  67. /* 11 12 13 14 15 10 11 */
  68. /* 22 23 24 25 20 21 22 */
  69. /* 33 34 35 30 31 32 33 */
  70. /* 44 45 40 41 42 43 44 */
  71. /* 55 50 51 52 53 54 55 */
  72. /* Let TRANSR = 'N'. RFP holds AP as follows: */
  73. /* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
  74. /* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
  75. /* the transpose of the first three columns of AP upper. */
  76. /* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
  77. /* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
  78. /* the transpose of the last three columns of AP lower. */
  79. /* This covers the case N even and TRANSR = 'N'. */
  80. /* RFP A RFP A */
  81. /* 03 04 05 33 43 53 */
  82. /* 13 14 15 00 44 54 */
  83. /* 23 24 25 10 11 55 */
  84. /* 33 34 35 20 21 22 */
  85. /* 00 44 45 30 31 32 */
  86. /* 01 11 55 40 41 42 */
  87. /* 02 12 22 50 51 52 */
  88. /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  89. /* transpose of RFP A above. One therefore gets: */
  90. /* RFP A RFP A */
  91. /* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
  92. /* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
  93. /* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
  94. /* We first consider Rectangular Full Packed (RFP) Format when N is */
  95. /* odd. We give an example where N = 5. */
  96. /* AP is Upper AP is Lower */
  97. /* 00 01 02 03 04 00 */
  98. /* 11 12 13 14 10 11 */
  99. /* 22 23 24 20 21 22 */
  100. /* 33 34 30 31 32 33 */
  101. /* 44 40 41 42 43 44 */
  102. /* Let TRANSR = 'N'. RFP holds AP as follows: */
  103. /* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
  104. /* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
  105. /* the transpose of the first two columns of AP upper. */
  106. /* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
  107. /* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
  108. /* the transpose of the last two columns of AP lower. */
  109. /* This covers the case N odd and TRANSR = 'N'. */
  110. /* RFP A RFP A */
  111. /* 02 03 04 00 33 43 */
  112. /* 12 13 14 10 11 44 */
  113. /* 22 23 24 20 21 22 */
  114. /* 00 33 34 30 31 32 */
  115. /* 01 11 44 40 41 42 */
  116. /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  117. /* transpose of RFP A above. One therefore gets: */
  118. /* RFP A RFP A */
  119. /* 02 12 22 00 01 00 10 20 30 40 50 */
  120. /* 03 13 23 33 11 33 11 21 31 41 51 */
  121. /* 04 14 24 34 44 43 44 22 32 42 52 */
  122. /* ===================================================================== */
  123. /* .. Parameters .. */
  124. /* .. */
  125. /* .. Local Scalars .. */
  126. /* .. */
  127. /* .. External Functions .. */
  128. /* .. */
  129. /* .. External Subroutines .. */
  130. /* .. */
  131. /* .. Executable Statements .. */
  132. /* Test the input parameters. */
  133. *info = 0;
  134. normaltransr = _starpu_lsame_(transr, "N");
  135. lower = _starpu_lsame_(uplo, "L");
  136. if (! normaltransr && ! _starpu_lsame_(transr, "T")) {
  137. *info = -1;
  138. } else if (! lower && ! _starpu_lsame_(uplo, "U")) {
  139. *info = -2;
  140. } else if (*n < 0) {
  141. *info = -3;
  142. }
  143. if (*info != 0) {
  144. i__1 = -(*info);
  145. _starpu_xerbla_("DTFTTP", &i__1);
  146. return 0;
  147. }
  148. /* Quick return if possible */
  149. if (*n == 0) {
  150. return 0;
  151. }
  152. if (*n == 1) {
  153. if (normaltransr) {
  154. ap[0] = arf[0];
  155. } else {
  156. ap[0] = arf[0];
  157. }
  158. return 0;
  159. }
  160. /* Size of array ARF(0:NT-1) */
  161. nt = *n * (*n + 1) / 2;
  162. /* Set N1 and N2 depending on LOWER */
  163. if (lower) {
  164. n2 = *n / 2;
  165. n1 = *n - n2;
  166. } else {
  167. n1 = *n / 2;
  168. n2 = *n - n1;
  169. }
  170. /* If N is odd, set NISODD = .TRUE. */
  171. /* If N is even, set K = N/2 and NISODD = .FALSE. */
  172. /* set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe) */
  173. /* where noe = 0 if n is even, noe = 1 if n is odd */
  174. if (*n % 2 == 0) {
  175. k = *n / 2;
  176. nisodd = FALSE_;
  177. lda = *n + 1;
  178. } else {
  179. nisodd = TRUE_;
  180. lda = *n;
  181. }
  182. /* ARF^C has lda rows and n+1-noe cols */
  183. if (! normaltransr) {
  184. lda = (*n + 1) / 2;
  185. }
  186. /* start execution: there are eight cases */
  187. if (nisodd) {
  188. /* N is odd */
  189. if (normaltransr) {
  190. /* N is odd and TRANSR = 'N' */
  191. if (lower) {
  192. /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
  193. /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
  194. /* T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n */
  195. ijp = 0;
  196. jp = 0;
  197. i__1 = n2;
  198. for (j = 0; j <= i__1; ++j) {
  199. i__2 = *n - 1;
  200. for (i__ = j; i__ <= i__2; ++i__) {
  201. ij = i__ + jp;
  202. ap[ijp] = arf[ij];
  203. ++ijp;
  204. }
  205. jp += lda;
  206. }
  207. i__1 = n2 - 1;
  208. for (i__ = 0; i__ <= i__1; ++i__) {
  209. i__2 = n2;
  210. for (j = i__ + 1; j <= i__2; ++j) {
  211. ij = i__ + j * lda;
  212. ap[ijp] = arf[ij];
  213. ++ijp;
  214. }
  215. }
  216. } else {
  217. /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
  218. /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
  219. /* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
  220. ijp = 0;
  221. i__1 = n1 - 1;
  222. for (j = 0; j <= i__1; ++j) {
  223. ij = n2 + j;
  224. i__2 = j;
  225. for (i__ = 0; i__ <= i__2; ++i__) {
  226. ap[ijp] = arf[ij];
  227. ++ijp;
  228. ij += lda;
  229. }
  230. }
  231. js = 0;
  232. i__1 = *n - 1;
  233. for (j = n1; j <= i__1; ++j) {
  234. ij = js;
  235. i__2 = js + j;
  236. for (ij = js; ij <= i__2; ++ij) {
  237. ap[ijp] = arf[ij];
  238. ++ijp;
  239. }
  240. js += lda;
  241. }
  242. }
  243. } else {
  244. /* N is odd and TRANSR = 'T' */
  245. if (lower) {
  246. /* SRPA for LOWER, TRANSPOSE and N is odd */
  247. /* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
  248. /* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */
  249. ijp = 0;
  250. i__1 = n2;
  251. for (i__ = 0; i__ <= i__1; ++i__) {
  252. i__2 = *n * lda - 1;
  253. i__3 = lda;
  254. for (ij = i__ * (lda + 1); i__3 < 0 ? ij >= i__2 : ij <=
  255. i__2; ij += i__3) {
  256. ap[ijp] = arf[ij];
  257. ++ijp;
  258. }
  259. }
  260. js = 1;
  261. i__1 = n2 - 1;
  262. for (j = 0; j <= i__1; ++j) {
  263. i__3 = js + n2 - j - 1;
  264. for (ij = js; ij <= i__3; ++ij) {
  265. ap[ijp] = arf[ij];
  266. ++ijp;
  267. }
  268. js = js + lda + 1;
  269. }
  270. } else {
  271. /* SRPA for UPPER, TRANSPOSE and N is odd */
  272. /* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
  273. /* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */
  274. ijp = 0;
  275. js = n2 * lda;
  276. i__1 = n1 - 1;
  277. for (j = 0; j <= i__1; ++j) {
  278. i__3 = js + j;
  279. for (ij = js; ij <= i__3; ++ij) {
  280. ap[ijp] = arf[ij];
  281. ++ijp;
  282. }
  283. js += lda;
  284. }
  285. i__1 = n1;
  286. for (i__ = 0; i__ <= i__1; ++i__) {
  287. i__3 = i__ + (n1 + i__) * lda;
  288. i__2 = lda;
  289. for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
  290. i__2) {
  291. ap[ijp] = arf[ij];
  292. ++ijp;
  293. }
  294. }
  295. }
  296. }
  297. } else {
  298. /* N is even */
  299. if (normaltransr) {
  300. /* N is even and TRANSR = 'N' */
  301. if (lower) {
  302. /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  303. /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
  304. /* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
  305. ijp = 0;
  306. jp = 0;
  307. i__1 = k - 1;
  308. for (j = 0; j <= i__1; ++j) {
  309. i__2 = *n - 1;
  310. for (i__ = j; i__ <= i__2; ++i__) {
  311. ij = i__ + 1 + jp;
  312. ap[ijp] = arf[ij];
  313. ++ijp;
  314. }
  315. jp += lda;
  316. }
  317. i__1 = k - 1;
  318. for (i__ = 0; i__ <= i__1; ++i__) {
  319. i__2 = k - 1;
  320. for (j = i__; j <= i__2; ++j) {
  321. ij = i__ + j * lda;
  322. ap[ijp] = arf[ij];
  323. ++ijp;
  324. }
  325. }
  326. } else {
  327. /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  328. /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
  329. /* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
  330. ijp = 0;
  331. i__1 = k - 1;
  332. for (j = 0; j <= i__1; ++j) {
  333. ij = k + 1 + j;
  334. i__2 = j;
  335. for (i__ = 0; i__ <= i__2; ++i__) {
  336. ap[ijp] = arf[ij];
  337. ++ijp;
  338. ij += lda;
  339. }
  340. }
  341. js = 0;
  342. i__1 = *n - 1;
  343. for (j = k; j <= i__1; ++j) {
  344. ij = js;
  345. i__2 = js + j;
  346. for (ij = js; ij <= i__2; ++ij) {
  347. ap[ijp] = arf[ij];
  348. ++ijp;
  349. }
  350. js += lda;
  351. }
  352. }
  353. } else {
  354. /* N is even and TRANSR = 'T' */
  355. if (lower) {
  356. /* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
  357. /* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
  358. /* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
  359. ijp = 0;
  360. i__1 = k - 1;
  361. for (i__ = 0; i__ <= i__1; ++i__) {
  362. i__2 = (*n + 1) * lda - 1;
  363. i__3 = lda;
  364. for (ij = i__ + (i__ + 1) * lda; i__3 < 0 ? ij >= i__2 :
  365. ij <= i__2; ij += i__3) {
  366. ap[ijp] = arf[ij];
  367. ++ijp;
  368. }
  369. }
  370. js = 0;
  371. i__1 = k - 1;
  372. for (j = 0; j <= i__1; ++j) {
  373. i__3 = js + k - j - 1;
  374. for (ij = js; ij <= i__3; ++ij) {
  375. ap[ijp] = arf[ij];
  376. ++ijp;
  377. }
  378. js = js + lda + 1;
  379. }
  380. } else {
  381. /* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
  382. /* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
  383. /* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
  384. ijp = 0;
  385. js = (k + 1) * lda;
  386. i__1 = k - 1;
  387. for (j = 0; j <= i__1; ++j) {
  388. i__3 = js + j;
  389. for (ij = js; ij <= i__3; ++ij) {
  390. ap[ijp] = arf[ij];
  391. ++ijp;
  392. }
  393. js += lda;
  394. }
  395. i__1 = k - 1;
  396. for (i__ = 0; i__ <= i__1; ++i__) {
  397. i__3 = i__ + (k + i__) * lda;
  398. i__2 = lda;
  399. for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
  400. i__2) {
  401. ap[ijp] = arf[ij];
  402. ++ijp;
  403. }
  404. }
  405. }
  406. }
  407. }
  408. return 0;
  409. /* End of DTFTTP */
  410. } /* _starpu_dtfttp_ */