dtftri.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475
  1. /* dtftri.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static doublereal c_b13 = -1.;
  15. static doublereal c_b18 = 1.;
  16. /* Subroutine */ int _starpu_dtftri_(char *transr, char *uplo, char *diag, integer *n,
  17. doublereal *a, integer *info)
  18. {
  19. /* System generated locals */
  20. integer i__1, i__2;
  21. /* Local variables */
  22. integer k, n1, n2;
  23. logical normaltransr;
  24. extern logical _starpu_lsame_(char *, char *);
  25. extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *,
  26. integer *, integer *, doublereal *, doublereal *, integer *,
  27. doublereal *, integer *);
  28. logical lower;
  29. extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
  30. logical nisodd;
  31. extern /* Subroutine */ int _starpu_dtrtri_(char *, char *, integer *, doublereal
  32. *, integer *, integer *);
  33. /* -- LAPACK routine (version 3.2) -- */
  34. /* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
  35. /* -- November 2008 -- */
  36. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  37. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  38. /* .. Scalar Arguments .. */
  39. /* .. */
  40. /* .. Array Arguments .. */
  41. /* .. */
  42. /* Purpose */
  43. /* ======= */
  44. /* DTFTRI computes the inverse of a triangular matrix A stored in RFP */
  45. /* format. */
  46. /* This is a Level 3 BLAS version of the algorithm. */
  47. /* Arguments */
  48. /* ========= */
  49. /* TRANSR (input) CHARACTER */
  50. /* = 'N': The Normal TRANSR of RFP A is stored; */
  51. /* = 'T': The Transpose TRANSR of RFP A is stored. */
  52. /* UPLO (input) CHARACTER */
  53. /* = 'U': A is upper triangular; */
  54. /* = 'L': A is lower triangular. */
  55. /* DIAG (input) CHARACTER */
  56. /* = 'N': A is non-unit triangular; */
  57. /* = 'U': A is unit triangular. */
  58. /* N (input) INTEGER */
  59. /* The order of the matrix A. N >= 0. */
  60. /* A (input/output) DOUBLE PRECISION array, dimension (0:nt-1); */
  61. /* nt=N*(N+1)/2. On entry, the triangular factor of a Hermitian */
  62. /* Positive Definite matrix A in RFP format. RFP format is */
  63. /* described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
  64. /* then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
  65. /* (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is */
  66. /* the transpose of RFP A as defined when */
  67. /* TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
  68. /* follows: If UPLO = 'U' the RFP A contains the nt elements of */
  69. /* upper packed A; If UPLO = 'L' the RFP A contains the nt */
  70. /* elements of lower packed A. The LDA of RFP A is (N+1)/2 when */
  71. /* TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is */
  72. /* even and N is odd. See the Note below for more details. */
  73. /* On exit, the (triangular) inverse of the original matrix, in */
  74. /* the same storage format. */
  75. /* INFO (output) INTEGER */
  76. /* = 0: successful exit */
  77. /* < 0: if INFO = -i, the i-th argument had an illegal value */
  78. /* > 0: if INFO = i, A(i,i) is exactly zero. The triangular */
  79. /* matrix is singular and its inverse can not be computed. */
  80. /* Notes */
  81. /* ===== */
  82. /* We first consider Rectangular Full Packed (RFP) Format when N is */
  83. /* even. We give an example where N = 6. */
  84. /* AP is Upper AP is Lower */
  85. /* 00 01 02 03 04 05 00 */
  86. /* 11 12 13 14 15 10 11 */
  87. /* 22 23 24 25 20 21 22 */
  88. /* 33 34 35 30 31 32 33 */
  89. /* 44 45 40 41 42 43 44 */
  90. /* 55 50 51 52 53 54 55 */
  91. /* Let TRANSR = 'N'. RFP holds AP as follows: */
  92. /* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
  93. /* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
  94. /* the transpose of the first three columns of AP upper. */
  95. /* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
  96. /* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
  97. /* the transpose of the last three columns of AP lower. */
  98. /* This covers the case N even and TRANSR = 'N'. */
  99. /* RFP A RFP A */
  100. /* 03 04 05 33 43 53 */
  101. /* 13 14 15 00 44 54 */
  102. /* 23 24 25 10 11 55 */
  103. /* 33 34 35 20 21 22 */
  104. /* 00 44 45 30 31 32 */
  105. /* 01 11 55 40 41 42 */
  106. /* 02 12 22 50 51 52 */
  107. /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  108. /* transpose of RFP A above. One therefore gets: */
  109. /* RFP A RFP A */
  110. /* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
  111. /* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
  112. /* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
  113. /* We first consider Rectangular Full Packed (RFP) Format when N is */
  114. /* odd. We give an example where N = 5. */
  115. /* AP is Upper AP is Lower */
  116. /* 00 01 02 03 04 00 */
  117. /* 11 12 13 14 10 11 */
  118. /* 22 23 24 20 21 22 */
  119. /* 33 34 30 31 32 33 */
  120. /* 44 40 41 42 43 44 */
  121. /* Let TRANSR = 'N'. RFP holds AP as follows: */
  122. /* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
  123. /* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
  124. /* the transpose of the first two columns of AP upper. */
  125. /* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
  126. /* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
  127. /* the transpose of the last two columns of AP lower. */
  128. /* This covers the case N odd and TRANSR = 'N'. */
  129. /* RFP A RFP A */
  130. /* 02 03 04 00 33 43 */
  131. /* 12 13 14 10 11 44 */
  132. /* 22 23 24 20 21 22 */
  133. /* 00 33 34 30 31 32 */
  134. /* 01 11 44 40 41 42 */
  135. /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  136. /* transpose of RFP A above. One therefore gets: */
  137. /* RFP A RFP A */
  138. /* 02 12 22 00 01 00 10 20 30 40 50 */
  139. /* 03 13 23 33 11 33 11 21 31 41 51 */
  140. /* 04 14 24 34 44 43 44 22 32 42 52 */
  141. /* ===================================================================== */
  142. /* .. Parameters .. */
  143. /* .. */
  144. /* .. Local Scalars .. */
  145. /* .. */
  146. /* .. External Functions .. */
  147. /* .. */
  148. /* .. External Subroutines .. */
  149. /* .. */
  150. /* .. Intrinsic Functions .. */
  151. /* .. */
  152. /* .. Executable Statements .. */
  153. /* Test the input parameters. */
  154. *info = 0;
  155. normaltransr = _starpu_lsame_(transr, "N");
  156. lower = _starpu_lsame_(uplo, "L");
  157. if (! normaltransr && ! _starpu_lsame_(transr, "T")) {
  158. *info = -1;
  159. } else if (! lower && ! _starpu_lsame_(uplo, "U")) {
  160. *info = -2;
  161. } else if (! _starpu_lsame_(diag, "N") && ! _starpu_lsame_(diag,
  162. "U")) {
  163. *info = -3;
  164. } else if (*n < 0) {
  165. *info = -4;
  166. }
  167. if (*info != 0) {
  168. i__1 = -(*info);
  169. _starpu_xerbla_("DTFTRI", &i__1);
  170. return 0;
  171. }
  172. /* Quick return if possible */
  173. if (*n == 0) {
  174. return 0;
  175. }
  176. /* If N is odd, set NISODD = .TRUE. */
  177. /* If N is even, set K = N/2 and NISODD = .FALSE. */
  178. if (*n % 2 == 0) {
  179. k = *n / 2;
  180. nisodd = FALSE_;
  181. } else {
  182. nisodd = TRUE_;
  183. }
  184. /* Set N1 and N2 depending on LOWER */
  185. if (lower) {
  186. n2 = *n / 2;
  187. n1 = *n - n2;
  188. } else {
  189. n1 = *n / 2;
  190. n2 = *n - n1;
  191. }
  192. /* start execution: there are eight cases */
  193. if (nisodd) {
  194. /* N is odd */
  195. if (normaltransr) {
  196. /* N is odd and TRANSR = 'N' */
  197. if (lower) {
  198. /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
  199. /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
  200. /* T1 -> a(0), T2 -> a(n), S -> a(n1) */
  201. _starpu_dtrtri_("L", diag, &n1, a, n, info);
  202. if (*info > 0) {
  203. return 0;
  204. }
  205. _starpu_dtrmm_("R", "L", "N", diag, &n2, &n1, &c_b13, a, n, &a[n1], n);
  206. _starpu_dtrtri_("U", diag, &n2, &a[*n], n, info)
  207. ;
  208. if (*info > 0) {
  209. *info += n1;
  210. }
  211. if (*info > 0) {
  212. return 0;
  213. }
  214. _starpu_dtrmm_("L", "U", "T", diag, &n2, &n1, &c_b18, &a[*n], n, &a[
  215. n1], n);
  216. } else {
  217. /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
  218. /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
  219. /* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
  220. _starpu_dtrtri_("L", diag, &n1, &a[n2], n, info)
  221. ;
  222. if (*info > 0) {
  223. return 0;
  224. }
  225. _starpu_dtrmm_("L", "L", "T", diag, &n1, &n2, &c_b13, &a[n2], n, a, n);
  226. _starpu_dtrtri_("U", diag, &n2, &a[n1], n, info)
  227. ;
  228. if (*info > 0) {
  229. *info += n1;
  230. }
  231. if (*info > 0) {
  232. return 0;
  233. }
  234. _starpu_dtrmm_("R", "U", "N", diag, &n1, &n2, &c_b18, &a[n1], n, a, n);
  235. }
  236. } else {
  237. /* N is odd and TRANSR = 'T' */
  238. if (lower) {
  239. /* SRPA for LOWER, TRANSPOSE and N is odd */
  240. /* T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1) */
  241. _starpu_dtrtri_("U", diag, &n1, a, &n1, info);
  242. if (*info > 0) {
  243. return 0;
  244. }
  245. _starpu_dtrmm_("L", "U", "N", diag, &n1, &n2, &c_b13, a, &n1, &a[n1 *
  246. n1], &n1);
  247. _starpu_dtrtri_("L", diag, &n2, &a[1], &n1, info);
  248. if (*info > 0) {
  249. *info += n1;
  250. }
  251. if (*info > 0) {
  252. return 0;
  253. }
  254. _starpu_dtrmm_("R", "L", "T", diag, &n1, &n2, &c_b18, &a[1], &n1, &a[
  255. n1 * n1], &n1);
  256. } else {
  257. /* SRPA for UPPER, TRANSPOSE and N is odd */
  258. /* T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0) */
  259. _starpu_dtrtri_("U", diag, &n1, &a[n2 * n2], &n2, info);
  260. if (*info > 0) {
  261. return 0;
  262. }
  263. _starpu_dtrmm_("R", "U", "T", diag, &n2, &n1, &c_b13, &a[n2 * n2], &
  264. n2, a, &n2);
  265. _starpu_dtrtri_("L", diag, &n2, &a[n1 * n2], &n2, info);
  266. if (*info > 0) {
  267. *info += n1;
  268. }
  269. if (*info > 0) {
  270. return 0;
  271. }
  272. _starpu_dtrmm_("L", "L", "N", diag, &n2, &n1, &c_b18, &a[n1 * n2], &
  273. n2, a, &n2);
  274. }
  275. }
  276. } else {
  277. /* N is even */
  278. if (normaltransr) {
  279. /* N is even and TRANSR = 'N' */
  280. if (lower) {
  281. /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  282. /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
  283. /* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
  284. i__1 = *n + 1;
  285. _starpu_dtrtri_("L", diag, &k, &a[1], &i__1, info);
  286. if (*info > 0) {
  287. return 0;
  288. }
  289. i__1 = *n + 1;
  290. i__2 = *n + 1;
  291. _starpu_dtrmm_("R", "L", "N", diag, &k, &k, &c_b13, &a[1], &i__1, &a[
  292. k + 1], &i__2);
  293. i__1 = *n + 1;
  294. _starpu_dtrtri_("U", diag, &k, a, &i__1, info);
  295. if (*info > 0) {
  296. *info += k;
  297. }
  298. if (*info > 0) {
  299. return 0;
  300. }
  301. i__1 = *n + 1;
  302. i__2 = *n + 1;
  303. _starpu_dtrmm_("L", "U", "T", diag, &k, &k, &c_b18, a, &i__1, &a[k +
  304. 1], &i__2)
  305. ;
  306. } else {
  307. /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  308. /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
  309. /* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
  310. i__1 = *n + 1;
  311. _starpu_dtrtri_("L", diag, &k, &a[k + 1], &i__1, info);
  312. if (*info > 0) {
  313. return 0;
  314. }
  315. i__1 = *n + 1;
  316. i__2 = *n + 1;
  317. _starpu_dtrmm_("L", "L", "T", diag, &k, &k, &c_b13, &a[k + 1], &i__1,
  318. a, &i__2);
  319. i__1 = *n + 1;
  320. _starpu_dtrtri_("U", diag, &k, &a[k], &i__1, info);
  321. if (*info > 0) {
  322. *info += k;
  323. }
  324. if (*info > 0) {
  325. return 0;
  326. }
  327. i__1 = *n + 1;
  328. i__2 = *n + 1;
  329. _starpu_dtrmm_("R", "U", "N", diag, &k, &k, &c_b18, &a[k], &i__1, a, &
  330. i__2);
  331. }
  332. } else {
  333. /* N is even and TRANSR = 'T' */
  334. if (lower) {
  335. /* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
  336. /* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
  337. /* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
  338. _starpu_dtrtri_("U", diag, &k, &a[k], &k, info);
  339. if (*info > 0) {
  340. return 0;
  341. }
  342. _starpu_dtrmm_("L", "U", "N", diag, &k, &k, &c_b13, &a[k], &k, &a[k *
  343. (k + 1)], &k);
  344. _starpu_dtrtri_("L", diag, &k, a, &k, info);
  345. if (*info > 0) {
  346. *info += k;
  347. }
  348. if (*info > 0) {
  349. return 0;
  350. }
  351. _starpu_dtrmm_("R", "L", "T", diag, &k, &k, &c_b18, a, &k, &a[k * (k
  352. + 1)], &k)
  353. ;
  354. } else {
  355. /* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
  356. /* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
  357. /* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
  358. _starpu_dtrtri_("U", diag, &k, &a[k * (k + 1)], &k, info);
  359. if (*info > 0) {
  360. return 0;
  361. }
  362. _starpu_dtrmm_("R", "U", "T", diag, &k, &k, &c_b13, &a[k * (k + 1)], &
  363. k, a, &k);
  364. _starpu_dtrtri_("L", diag, &k, &a[k * k], &k, info);
  365. if (*info > 0) {
  366. *info += k;
  367. }
  368. if (*info > 0) {
  369. return 0;
  370. }
  371. _starpu_dtrmm_("L", "L", "N", diag, &k, &k, &c_b18, &a[k * k], &k, a,
  372. &k);
  373. }
  374. }
  375. }
  376. return 0;
  377. /* End of DTFTRI */
  378. } /* _starpu_dtftri_ */