123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- /* dtbtrs.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dtbtrs_(char *uplo, char *trans, char *diag, integer *n,
- integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal
- *b, integer *ldb, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
- /* Local variables */
- integer j;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dtbsv_(char *, char *, char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *);
- logical upper;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- logical nounit;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTBTRS solves a triangular system of the form */
- /* A * X = B or A**T * X = B, */
- /* where A is a triangular band matrix of order N, and B is an */
- /* N-by NRHS matrix. A check is made to verify that A is nonsingular. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': A is upper triangular; */
- /* = 'L': A is lower triangular. */
- /* TRANS (input) CHARACTER*1 */
- /* Specifies the form the system of equations: */
- /* = 'N': A * X = B (No transpose) */
- /* = 'T': A**T * X = B (Transpose) */
- /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */
- /* DIAG (input) CHARACTER*1 */
- /* = 'N': A is non-unit triangular; */
- /* = 'U': A is unit triangular. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* KD (input) INTEGER */
- /* The number of superdiagonals or subdiagonals of the */
- /* triangular band matrix A. KD >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrix B. NRHS >= 0. */
- /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* The upper or lower triangular band matrix A, stored in the */
- /* first kd+1 rows of AB. The j-th column of A is stored */
- /* in the j-th column of the array AB as follows: */
- /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
- /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
- /* If DIAG = 'U', the diagonal elements of A are not referenced */
- /* and are assumed to be 1. */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array AB. LDAB >= KD+1. */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the right hand side matrix B. */
- /* On exit, if INFO = 0, the solution matrix X. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, the i-th diagonal element of A is zero, */
- /* indicating that the matrix is singular and the */
- /* solutions X have not been computed. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- *info = 0;
- nounit = _starpu_lsame_(diag, "N");
- upper = _starpu_lsame_(uplo, "U");
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (! _starpu_lsame_(trans, "N") && ! _starpu_lsame_(trans,
- "T") && ! _starpu_lsame_(trans, "C")) {
- *info = -2;
- } else if (! nounit && ! _starpu_lsame_(diag, "U")) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*kd < 0) {
- *info = -5;
- } else if (*nrhs < 0) {
- *info = -6;
- } else if (*ldab < *kd + 1) {
- *info = -8;
- } else if (*ldb < max(1,*n)) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTBTRS", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Check for singularity. */
- if (nounit) {
- if (upper) {
- i__1 = *n;
- for (*info = 1; *info <= i__1; ++(*info)) {
- if (ab[*kd + 1 + *info * ab_dim1] == 0.) {
- return 0;
- }
- /* L10: */
- }
- } else {
- i__1 = *n;
- for (*info = 1; *info <= i__1; ++(*info)) {
- if (ab[*info * ab_dim1 + 1] == 0.) {
- return 0;
- }
- /* L20: */
- }
- }
- }
- *info = 0;
- /* Solve A * X = B or A' * X = B. */
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dtbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &b[j * b_dim1
- + 1], &c__1);
- /* L30: */
- }
- return 0;
- /* End of DTBTRS */
- } /* _starpu_dtbtrs_ */
|