123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 |
- /* dsysvx.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- /* Subroutine */ int _starpu_dsysvx_(char *fact, char *uplo, integer *n, integer *
- nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf,
- integer *ipiv, doublereal *b, integer *ldb, doublereal *x, integer *
- ldx, doublereal *rcond, doublereal *ferr, doublereal *berr,
- doublereal *work, integer *lwork, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
- x_offset, i__1, i__2;
- /* Local variables */
- integer nb;
- extern logical _starpu_lsame_(char *, char *);
- doublereal anorm;
- extern doublereal _starpu_dlamch_(char *);
- logical nofact;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern doublereal _starpu_dlansy_(char *, char *, integer *, doublereal *,
- integer *, doublereal *);
- extern /* Subroutine */ int _starpu_dsycon_(char *, integer *, doublereal *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *), _starpu_dsyrfs_(char *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, integer *),
- _starpu_dsytrf_(char *, integer *, doublereal *, integer *, integer *,
- doublereal *, integer *, integer *);
- integer lwkopt;
- logical lquery;
- extern /* Subroutine */ int _starpu_dsytrs_(char *, integer *, integer *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSYSVX uses the diagonal pivoting factorization to compute the */
- /* solution to a real system of linear equations A * X = B, */
- /* where A is an N-by-N symmetric matrix and X and B are N-by-NRHS */
- /* matrices. */
- /* Error bounds on the solution and a condition estimate are also */
- /* provided. */
- /* Description */
- /* =========== */
- /* The following steps are performed: */
- /* 1. If FACT = 'N', the diagonal pivoting method is used to factor A. */
- /* The form of the factorization is */
- /* A = U * D * U**T, if UPLO = 'U', or */
- /* A = L * D * L**T, if UPLO = 'L', */
- /* where U (or L) is a product of permutation and unit upper (lower) */
- /* triangular matrices, and D is symmetric and block diagonal with */
- /* 1-by-1 and 2-by-2 diagonal blocks. */
- /* 2. If some D(i,i)=0, so that D is exactly singular, then the routine */
- /* returns with INFO = i. Otherwise, the factored form of A is used */
- /* to estimate the condition number of the matrix A. If the */
- /* reciprocal of the condition number is less than machine precision, */
- /* INFO = N+1 is returned as a warning, but the routine still goes on */
- /* to solve for X and compute error bounds as described below. */
- /* 3. The system of equations is solved for X using the factored form */
- /* of A. */
- /* 4. Iterative refinement is applied to improve the computed solution */
- /* matrix and calculate error bounds and backward error estimates */
- /* for it. */
- /* Arguments */
- /* ========= */
- /* FACT (input) CHARACTER*1 */
- /* Specifies whether or not the factored form of A has been */
- /* supplied on entry. */
- /* = 'F': On entry, AF and IPIV contain the factored form of */
- /* A. AF and IPIV will not be modified. */
- /* = 'N': The matrix A will be copied to AF and factored. */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The number of linear equations, i.e., the order of the */
- /* matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrices B and X. NRHS >= 0. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
- /* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */
- /* upper triangular part of A contains the upper triangular part */
- /* of the matrix A, and the strictly lower triangular part of A */
- /* is not referenced. If UPLO = 'L', the leading N-by-N lower */
- /* triangular part of A contains the lower triangular part of */
- /* the matrix A, and the strictly upper triangular part of A is */
- /* not referenced. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N) */
- /* If FACT = 'F', then AF is an input argument and on entry */
- /* contains the block diagonal matrix D and the multipliers used */
- /* to obtain the factor U or L from the factorization */
- /* A = U*D*U**T or A = L*D*L**T as computed by DSYTRF. */
- /* If FACT = 'N', then AF is an output argument and on exit */
- /* returns the block diagonal matrix D and the multipliers used */
- /* to obtain the factor U or L from the factorization */
- /* A = U*D*U**T or A = L*D*L**T. */
- /* LDAF (input) INTEGER */
- /* The leading dimension of the array AF. LDAF >= max(1,N). */
- /* IPIV (input or output) INTEGER array, dimension (N) */
- /* If FACT = 'F', then IPIV is an input argument and on entry */
- /* contains details of the interchanges and the block structure */
- /* of D, as determined by DSYTRF. */
- /* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
- /* interchanged and D(k,k) is a 1-by-1 diagonal block. */
- /* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
- /* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
- /* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
- /* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
- /* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
- /* If FACT = 'N', then IPIV is an output argument and on exit */
- /* contains details of the interchanges and the block structure */
- /* of D, as determined by DSYTRF. */
- /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* The N-by-NRHS right hand side matrix B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
- /* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
- /* LDX (input) INTEGER */
- /* The leading dimension of the array X. LDX >= max(1,N). */
- /* RCOND (output) DOUBLE PRECISION */
- /* The estimate of the reciprocal condition number of the matrix */
- /* A. If RCOND is less than the machine precision (in */
- /* particular, if RCOND = 0), the matrix is singular to working */
- /* precision. This condition is indicated by a return code of */
- /* INFO > 0. */
- /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The estimated forward error bound for each solution vector */
- /* X(j) (the j-th column of the solution matrix X). */
- /* If XTRUE is the true solution corresponding to X(j), FERR(j) */
- /* is an estimated upper bound for the magnitude of the largest */
- /* element in (X(j) - XTRUE) divided by the magnitude of the */
- /* largest element in X(j). The estimate is as reliable as */
- /* the estimate for RCOND, and is almost always a slight */
- /* overestimate of the true error. */
- /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The componentwise relative backward error of each solution */
- /* vector X(j) (i.e., the smallest relative change in */
- /* any element of A or B that makes X(j) an exact solution). */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The length of WORK. LWORK >= max(1,3*N), and for best */
- /* performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where */
- /* NB is the optimal blocksize for DSYTRF. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* IWORK (workspace) INTEGER array, dimension (N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, and i is */
- /* <= N: D(i,i) is exactly zero. The factorization */
- /* has been completed but the factor D is exactly */
- /* singular, so the solution and error bounds could */
- /* not be computed. RCOND = 0 is returned. */
- /* = N+1: D is nonsingular, but RCOND is less than machine */
- /* precision, meaning that the matrix is singular */
- /* to working precision. Nevertheless, the */
- /* solution and error bounds are computed because */
- /* there are a number of situations where the */
- /* computed solution can be more accurate than the */
- /* value of RCOND would suggest. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- af_dim1 = *ldaf;
- af_offset = 1 + af_dim1;
- af -= af_offset;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1;
- x -= x_offset;
- --ferr;
- --berr;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- nofact = _starpu_lsame_(fact, "N");
- lquery = *lwork == -1;
- if (! nofact && ! _starpu_lsame_(fact, "F")) {
- *info = -1;
- } else if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo,
- "L")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 0) {
- *info = -4;
- } else if (*lda < max(1,*n)) {
- *info = -6;
- } else if (*ldaf < max(1,*n)) {
- *info = -8;
- } else if (*ldb < max(1,*n)) {
- *info = -11;
- } else if (*ldx < max(1,*n)) {
- *info = -13;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *n * 3;
- if (*lwork < max(i__1,i__2) && ! lquery) {
- *info = -18;
- }
- }
- if (*info == 0) {
- /* Computing MAX */
- i__1 = 1, i__2 = *n * 3;
- lwkopt = max(i__1,i__2);
- if (nofact) {
- nb = _starpu_ilaenv_(&c__1, "DSYTRF", uplo, n, &c_n1, &c_n1, &c_n1);
- /* Computing MAX */
- i__1 = lwkopt, i__2 = *n * nb;
- lwkopt = max(i__1,i__2);
- }
- work[1] = (doublereal) lwkopt;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSYSVX", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- if (nofact) {
- /* Compute the factorization A = U*D*U' or A = L*D*L'. */
- _starpu_dlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);
- _starpu_dsytrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], lwork,
- info);
- /* Return if INFO is non-zero. */
- if (*info > 0) {
- *rcond = 0.;
- return 0;
- }
- }
- /* Compute the norm of the matrix A. */
- anorm = _starpu_dlansy_("I", uplo, n, &a[a_offset], lda, &work[1]);
- /* Compute the reciprocal of the condition number of A. */
- _starpu_dsycon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1],
- &iwork[1], info);
- /* Compute the solution vectors X. */
- _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
- _starpu_dsytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx,
- info);
- /* Use iterative refinement to improve the computed solutions and */
- /* compute error bounds and backward error estimates for them. */
- _starpu_dsyrfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1],
- &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1]
- , &iwork[1], info);
- /* Set INFO = N+1 if the matrix is singular to working precision. */
- if (*rcond < _starpu_dlamch_("Epsilon")) {
- *info = *n + 1;
- }
- work[1] = (doublereal) lwkopt;
- return 0;
- /* End of DSYSVX */
- } /* _starpu_dsysvx_ */
|