123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 |
- /* dsygvx.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static doublereal c_b19 = 1.;
- /* Subroutine */ int _starpu_dsygvx_(integer *itype, char *jobz, char *range, char *
- uplo, integer *n, doublereal *a, integer *lda, doublereal *b, integer
- *ldb, doublereal *vl, doublereal *vu, integer *il, integer *iu,
- doublereal *abstol, integer *m, doublereal *w, doublereal *z__,
- integer *ldz, doublereal *work, integer *lwork, integer *iwork,
- integer *ifail, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2;
- /* Local variables */
- integer nb;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *);
- char trans[1];
- extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *);
- logical upper, wantz, alleig, indeig, valeig;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int _starpu_dpotrf_(char *, integer *, doublereal *,
- integer *, integer *);
- integer lwkmin;
- extern /* Subroutine */ int _starpu_dsygst_(integer *, char *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *);
- integer lwkopt;
- logical lquery;
- extern /* Subroutine */ int _starpu_dsyevx_(char *, char *, char *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *, integer *, integer
- *);
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSYGVX computes selected eigenvalues, and optionally, eigenvectors */
- /* of a real generalized symmetric-definite eigenproblem, of the form */
- /* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A */
- /* and B are assumed to be symmetric and B is also positive definite. */
- /* Eigenvalues and eigenvectors can be selected by specifying either a */
- /* range of values or a range of indices for the desired eigenvalues. */
- /* Arguments */
- /* ========= */
- /* ITYPE (input) INTEGER */
- /* Specifies the problem type to be solved: */
- /* = 1: A*x = (lambda)*B*x */
- /* = 2: A*B*x = (lambda)*x */
- /* = 3: B*A*x = (lambda)*x */
- /* JOBZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only; */
- /* = 'V': Compute eigenvalues and eigenvectors. */
- /* RANGE (input) CHARACTER*1 */
- /* = 'A': all eigenvalues will be found. */
- /* = 'V': all eigenvalues in the half-open interval (VL,VU] */
- /* will be found. */
- /* = 'I': the IL-th through IU-th eigenvalues will be found. */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A and B are stored; */
- /* = 'L': Lower triangle of A and B are stored. */
- /* N (input) INTEGER */
- /* The order of the matrix pencil (A,B). N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
- /* On entry, the symmetric matrix A. If UPLO = 'U', the */
- /* leading N-by-N upper triangular part of A contains the */
- /* upper triangular part of the matrix A. If UPLO = 'L', */
- /* the leading N-by-N lower triangular part of A contains */
- /* the lower triangular part of the matrix A. */
- /* On exit, the lower triangle (if UPLO='L') or the upper */
- /* triangle (if UPLO='U') of A, including the diagonal, is */
- /* destroyed. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
- /* On entry, the symmetric matrix B. If UPLO = 'U', the */
- /* leading N-by-N upper triangular part of B contains the */
- /* upper triangular part of the matrix B. If UPLO = 'L', */
- /* the leading N-by-N lower triangular part of B contains */
- /* the lower triangular part of the matrix B. */
- /* On exit, if INFO <= N, the part of B containing the matrix is */
- /* overwritten by the triangular factor U or L from the Cholesky */
- /* factorization B = U**T*U or B = L*L**T. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* VL (input) DOUBLE PRECISION */
- /* VU (input) DOUBLE PRECISION */
- /* If RANGE='V', the lower and upper bounds of the interval to */
- /* be searched for eigenvalues. VL < VU. */
- /* Not referenced if RANGE = 'A' or 'I'. */
- /* IL (input) INTEGER */
- /* IU (input) INTEGER */
- /* If RANGE='I', the indices (in ascending order) of the */
- /* smallest and largest eigenvalues to be returned. */
- /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
- /* Not referenced if RANGE = 'A' or 'V'. */
- /* ABSTOL (input) DOUBLE PRECISION */
- /* The absolute error tolerance for the eigenvalues. */
- /* An approximate eigenvalue is accepted as converged */
- /* when it is determined to lie in an interval [a,b] */
- /* of width less than or equal to */
- /* ABSTOL + EPS * max( |a|,|b| ) , */
- /* where EPS is the machine precision. If ABSTOL is less than */
- /* or equal to zero, then EPS*|T| will be used in its place, */
- /* where |T| is the 1-norm of the tridiagonal matrix obtained */
- /* by reducing A to tridiagonal form. */
- /* Eigenvalues will be computed most accurately when ABSTOL is */
- /* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
- /* If this routine returns with INFO>0, indicating that some */
- /* eigenvectors did not converge, try setting ABSTOL to */
- /* 2*DLAMCH('S'). */
- /* M (output) INTEGER */
- /* The total number of eigenvalues found. 0 <= M <= N. */
- /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* On normal exit, the first M elements contain the selected */
- /* eigenvalues in ascending order. */
- /* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
- /* If JOBZ = 'N', then Z is not referenced. */
- /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
- /* contain the orthonormal eigenvectors of the matrix A */
- /* corresponding to the selected eigenvalues, with the i-th */
- /* column of Z holding the eigenvector associated with W(i). */
- /* The eigenvectors are normalized as follows: */
- /* if ITYPE = 1 or 2, Z**T*B*Z = I; */
- /* if ITYPE = 3, Z**T*inv(B)*Z = I. */
- /* If an eigenvector fails to converge, then that column of Z */
- /* contains the latest approximation to the eigenvector, and the */
- /* index of the eigenvector is returned in IFAIL. */
- /* Note: the user must ensure that at least max(1,M) columns are */
- /* supplied in the array Z; if RANGE = 'V', the exact value of M */
- /* is not known in advance and an upper bound must be used. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1, and if */
- /* JOBZ = 'V', LDZ >= max(1,N). */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The length of the array WORK. LWORK >= max(1,8*N). */
- /* For optimal efficiency, LWORK >= (NB+3)*N, */
- /* where NB is the blocksize for DSYTRD returned by ILAENV. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* IWORK (workspace) INTEGER array, dimension (5*N) */
- /* IFAIL (output) INTEGER array, dimension (N) */
- /* If JOBZ = 'V', then if INFO = 0, the first M elements of */
- /* IFAIL are zero. If INFO > 0, then IFAIL contains the */
- /* indices of the eigenvectors that failed to converge. */
- /* If JOBZ = 'N', then IFAIL is not referenced. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: DPOTRF or DSYEVX returned an error code: */
- /* <= N: if INFO = i, DSYEVX failed to converge; */
- /* i eigenvectors failed to converge. Their indices */
- /* are stored in array IFAIL. */
- /* > N: if INFO = N + i, for 1 <= i <= N, then the leading */
- /* minor of order i of B is not positive definite. */
- /* The factorization of B could not be completed and */
- /* no eigenvalues or eigenvectors were computed. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- --iwork;
- --ifail;
- /* Function Body */
- upper = _starpu_lsame_(uplo, "U");
- wantz = _starpu_lsame_(jobz, "V");
- alleig = _starpu_lsame_(range, "A");
- valeig = _starpu_lsame_(range, "V");
- indeig = _starpu_lsame_(range, "I");
- lquery = *lwork == -1;
- *info = 0;
- if (*itype < 1 || *itype > 3) {
- *info = -1;
- } else if (! (wantz || _starpu_lsame_(jobz, "N"))) {
- *info = -2;
- } else if (! (alleig || valeig || indeig)) {
- *info = -3;
- } else if (! (upper || _starpu_lsame_(uplo, "L"))) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < max(1,*n)) {
- *info = -7;
- } else if (*ldb < max(1,*n)) {
- *info = -9;
- } else {
- if (valeig) {
- if (*n > 0 && *vu <= *vl) {
- *info = -11;
- }
- } else if (indeig) {
- if (*il < 1 || *il > max(1,*n)) {
- *info = -12;
- } else if (*iu < min(*n,*il) || *iu > *n) {
- *info = -13;
- }
- }
- }
- if (*info == 0) {
- if (*ldz < 1 || wantz && *ldz < *n) {
- *info = -18;
- }
- }
- if (*info == 0) {
- /* Computing MAX */
- i__1 = 1, i__2 = *n << 3;
- lwkmin = max(i__1,i__2);
- nb = _starpu_ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
- /* Computing MAX */
- i__1 = lwkmin, i__2 = (nb + 3) * *n;
- lwkopt = max(i__1,i__2);
- work[1] = (doublereal) lwkopt;
- if (*lwork < lwkmin && ! lquery) {
- *info = -20;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSYGVX", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- *m = 0;
- if (*n == 0) {
- return 0;
- }
- /* Form a Cholesky factorization of B. */
- _starpu_dpotrf_(uplo, n, &b[b_offset], ldb, info);
- if (*info != 0) {
- *info = *n + *info;
- return 0;
- }
- /* Transform problem to standard eigenvalue problem and solve. */
- _starpu_dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
- _starpu_dsyevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol,
- m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &iwork[1], &ifail[
- 1], info);
- if (wantz) {
- /* Backtransform eigenvectors to the original problem. */
- if (*info > 0) {
- *m = *info - 1;
- }
- if (*itype == 1 || *itype == 2) {
- /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
- /* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
- if (upper) {
- *(unsigned char *)trans = 'N';
- } else {
- *(unsigned char *)trans = 'T';
- }
- _starpu_dtrsm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset]
- , ldb, &z__[z_offset], ldz);
- } else if (*itype == 3) {
- /* For B*A*x=(lambda)*x; */
- /* backtransform eigenvectors: x = L*y or U'*y */
- if (upper) {
- *(unsigned char *)trans = 'T';
- } else {
- *(unsigned char *)trans = 'N';
- }
- _starpu_dtrmm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset]
- , ldb, &z__[z_offset], ldz);
- }
- }
- /* Set WORK(1) to optimal workspace size. */
- work[1] = (doublereal) lwkopt;
- return 0;
- /* End of DSYGVX */
- } /* _starpu_dsygvx_ */
|