123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- /* dsygs2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b6 = -1.;
- static integer c__1 = 1;
- static doublereal c_b27 = 1.;
- /* Subroutine */ int _starpu_dsygs2_(integer *itype, char *uplo, integer *n,
- doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
- info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
- doublereal d__1;
- /* Local variables */
- integer k;
- doublereal ct, akk, bkk;
- extern /* Subroutine */ int _starpu_dsyr2_(char *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *), _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *);
- logical upper;
- extern /* Subroutine */ int _starpu_dtrmv_(char *, char *, char *, integer *,
- doublereal *, integer *, doublereal *, integer *), _starpu_dtrsv_(char *, char *, char *, integer *, doublereal *,
- integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSYGS2 reduces a real symmetric-definite generalized eigenproblem */
- /* to standard form. */
- /* If ITYPE = 1, the problem is A*x = lambda*B*x, */
- /* and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L') */
- /* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */
- /* B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L. */
- /* B must have been previously factorized as U'*U or L*L' by DPOTRF. */
- /* Arguments */
- /* ========= */
- /* ITYPE (input) INTEGER */
- /* = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L'); */
- /* = 2 or 3: compute U*A*U' or L'*A*L. */
- /* UPLO (input) CHARACTER*1 */
- /* Specifies whether the upper or lower triangular part of the */
- /* symmetric matrix A is stored, and how B has been factorized. */
- /* = 'U': Upper triangular */
- /* = 'L': Lower triangular */
- /* N (input) INTEGER */
- /* The order of the matrices A and B. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
- /* n by n upper triangular part of A contains the upper */
- /* triangular part of the matrix A, and the strictly lower */
- /* triangular part of A is not referenced. If UPLO = 'L', the */
- /* leading n by n lower triangular part of A contains the lower */
- /* triangular part of the matrix A, and the strictly upper */
- /* triangular part of A is not referenced. */
- /* On exit, if INFO = 0, the transformed matrix, stored in the */
- /* same format as A. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* B (input) DOUBLE PRECISION array, dimension (LDB,N) */
- /* The triangular factor from the Cholesky factorization of B, */
- /* as returned by DPOTRF. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- if (*itype < 1 || *itype > 3) {
- *info = -1;
- } else if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSYGS2", &i__1);
- return 0;
- }
- if (*itype == 1) {
- if (upper) {
- /* Compute inv(U')*A*inv(U) */
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- /* Update the upper triangle of A(k:n,k:n) */
- akk = a[k + k * a_dim1];
- bkk = b[k + k * b_dim1];
- /* Computing 2nd power */
- d__1 = bkk;
- akk /= d__1 * d__1;
- a[k + k * a_dim1] = akk;
- if (k < *n) {
- i__2 = *n - k;
- d__1 = 1. / bkk;
- _starpu_dscal_(&i__2, &d__1, &a[k + (k + 1) * a_dim1], lda);
- ct = akk * -.5;
- i__2 = *n - k;
- _starpu_daxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + (
- k + 1) * a_dim1], lda);
- i__2 = *n - k;
- _starpu_dsyr2_(uplo, &i__2, &c_b6, &a[k + (k + 1) * a_dim1], lda,
- &b[k + (k + 1) * b_dim1], ldb, &a[k + 1 + (k + 1)
- * a_dim1], lda);
- i__2 = *n - k;
- _starpu_daxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + (
- k + 1) * a_dim1], lda);
- i__2 = *n - k;
- _starpu_dtrsv_(uplo, "Transpose", "Non-unit", &i__2, &b[k + 1 + (
- k + 1) * b_dim1], ldb, &a[k + (k + 1) * a_dim1],
- lda);
- }
- /* L10: */
- }
- } else {
- /* Compute inv(L)*A*inv(L') */
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- /* Update the lower triangle of A(k:n,k:n) */
- akk = a[k + k * a_dim1];
- bkk = b[k + k * b_dim1];
- /* Computing 2nd power */
- d__1 = bkk;
- akk /= d__1 * d__1;
- a[k + k * a_dim1] = akk;
- if (k < *n) {
- i__2 = *n - k;
- d__1 = 1. / bkk;
- _starpu_dscal_(&i__2, &d__1, &a[k + 1 + k * a_dim1], &c__1);
- ct = akk * -.5;
- i__2 = *n - k;
- _starpu_daxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k +
- 1 + k * a_dim1], &c__1);
- i__2 = *n - k;
- _starpu_dsyr2_(uplo, &i__2, &c_b6, &a[k + 1 + k * a_dim1], &c__1,
- &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + (k + 1)
- * a_dim1], lda);
- i__2 = *n - k;
- _starpu_daxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k +
- 1 + k * a_dim1], &c__1);
- i__2 = *n - k;
- _starpu_dtrsv_(uplo, "No transpose", "Non-unit", &i__2, &b[k + 1
- + (k + 1) * b_dim1], ldb, &a[k + 1 + k * a_dim1],
- &c__1);
- }
- /* L20: */
- }
- }
- } else {
- if (upper) {
- /* Compute U*A*U' */
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- /* Update the upper triangle of A(1:k,1:k) */
- akk = a[k + k * a_dim1];
- bkk = b[k + k * b_dim1];
- i__2 = k - 1;
- _starpu_dtrmv_(uplo, "No transpose", "Non-unit", &i__2, &b[b_offset],
- ldb, &a[k * a_dim1 + 1], &c__1);
- ct = akk * .5;
- i__2 = k - 1;
- _starpu_daxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 +
- 1], &c__1);
- i__2 = k - 1;
- _starpu_dsyr2_(uplo, &i__2, &c_b27, &a[k * a_dim1 + 1], &c__1, &b[k *
- b_dim1 + 1], &c__1, &a[a_offset], lda);
- i__2 = k - 1;
- _starpu_daxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 +
- 1], &c__1);
- i__2 = k - 1;
- _starpu_dscal_(&i__2, &bkk, &a[k * a_dim1 + 1], &c__1);
- /* Computing 2nd power */
- d__1 = bkk;
- a[k + k * a_dim1] = akk * (d__1 * d__1);
- /* L30: */
- }
- } else {
- /* Compute L'*A*L */
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- /* Update the lower triangle of A(1:k,1:k) */
- akk = a[k + k * a_dim1];
- bkk = b[k + k * b_dim1];
- i__2 = k - 1;
- _starpu_dtrmv_(uplo, "Transpose", "Non-unit", &i__2, &b[b_offset],
- ldb, &a[k + a_dim1], lda);
- ct = akk * .5;
- i__2 = k - 1;
- _starpu_daxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda);
- i__2 = k - 1;
- _starpu_dsyr2_(uplo, &i__2, &c_b27, &a[k + a_dim1], lda, &b[k +
- b_dim1], ldb, &a[a_offset], lda);
- i__2 = k - 1;
- _starpu_daxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda);
- i__2 = k - 1;
- _starpu_dscal_(&i__2, &bkk, &a[k + a_dim1], lda);
- /* Computing 2nd power */
- d__1 = bkk;
- a[k + k * a_dim1] = akk * (d__1 * d__1);
- /* L40: */
- }
- }
- }
- return 0;
- /* End of DSYGS2 */
- } /* _starpu_dsygs2_ */
|