123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334 |
- /* dsyequb.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dsyequb_(char *uplo, integer *n, doublereal *a, integer *
- lda, doublereal *s, doublereal *scond, doublereal *amax, doublereal *
- work, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal d__1, d__2, d__3;
- /* Builtin functions */
- double sqrt(doublereal), log(doublereal), pow_di(doublereal *, integer *);
- /* Local variables */
- doublereal d__;
- integer i__, j;
- doublereal t, u, c0, c1, c2, si;
- logical up;
- doublereal avg, std, tol, base;
- integer iter;
- doublereal smin, smax, scale;
- extern logical _starpu_lsame_(char *, char *);
- doublereal sumsq;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal bignum;
- extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *,
- doublereal *, doublereal *);
- doublereal smlnum;
- /* -- LAPACK routine (version 3.2) -- */
- /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
- /* -- Jason Riedy of Univ. of California Berkeley. -- */
- /* -- November 2008 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley and NAG Ltd. -- */
- /* .. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSYEQUB computes row and column scalings intended to equilibrate a */
- /* symmetric matrix A and reduce its condition number */
- /* (with respect to the two-norm). S contains the scale factors, */
- /* S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with */
- /* elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This */
- /* choice of S puts the condition number of B within a factor N of the */
- /* smallest possible condition number over all possible diagonal */
- /* scalings. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
- /* The N-by-N symmetric matrix whose scaling */
- /* factors are to be computed. Only the diagonal elements of A */
- /* are referenced. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* S (output) DOUBLE PRECISION array, dimension (N) */
- /* If INFO = 0, S contains the scale factors for A. */
- /* SCOND (output) DOUBLE PRECISION */
- /* If INFO = 0, S contains the ratio of the smallest S(i) to */
- /* the largest S(i). If SCOND >= 0.1 and AMAX is neither too */
- /* large nor too small, it is not worth scaling by S. */
- /* AMAX (output) DOUBLE PRECISION */
- /* Absolute value of largest matrix element. If AMAX is very */
- /* close to overflow or very close to underflow, the matrix */
- /* should be scaled. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, the i-th diagonal element is nonpositive. */
- /* Further Details */
- /* ======= ======= */
- /* Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization", */
- /* Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. */
- /* DOI 10.1023/B:NUMA.0000016606.32820.69 */
- /* Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --s;
- --work;
- /* Function Body */
- *info = 0;
- if (! (_starpu_lsame_(uplo, "U") || _starpu_lsame_(uplo, "L"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSYEQUB", &i__1);
- return 0;
- }
- up = _starpu_lsame_(uplo, "U");
- *amax = 0.;
- /* Quick return if possible. */
- if (*n == 0) {
- *scond = 1.;
- return 0;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- s[i__] = 0.;
- }
- *amax = 0.;
- if (up) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = s[i__], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- s[i__] = max(d__2,d__3);
- /* Computing MAX */
- d__2 = s[j], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- s[j] = max(d__2,d__3);
- /* Computing MAX */
- d__2 = *amax, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- *amax = max(d__2,d__3);
- }
- /* Computing MAX */
- d__2 = s[j], d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));
- s[j] = max(d__2,d__3);
- /* Computing MAX */
- d__2 = *amax, d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));
- *amax = max(d__2,d__3);
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- d__2 = s[j], d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));
- s[j] = max(d__2,d__3);
- /* Computing MAX */
- d__2 = *amax, d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));
- *amax = max(d__2,d__3);
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = s[i__], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- s[i__] = max(d__2,d__3);
- /* Computing MAX */
- d__2 = s[j], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- s[j] = max(d__2,d__3);
- /* Computing MAX */
- d__2 = *amax, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- *amax = max(d__2,d__3);
- }
- }
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- s[j] = 1. / s[j];
- }
- tol = 1. / sqrt(*n * 2.);
- for (iter = 1; iter <= 100; ++iter) {
- scale = 0.;
- sumsq = 0.;
- /* BETA = |A|S */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- if (up) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- t = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[
- j];
- work[j] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[
- i__];
- }
- work[j] += (d__1 = a[j + j * a_dim1], abs(d__1)) * s[j];
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] += (d__1 = a[j + j * a_dim1], abs(d__1)) * s[j];
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- t = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[
- j];
- work[j] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[
- i__];
- }
- }
- }
- /* avg = s^T beta / n */
- avg = 0.;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- avg += s[i__] * work[i__];
- }
- avg /= *n;
- std = 0.;
- i__1 = *n * 3;
- for (i__ = (*n << 1) + 1; i__ <= i__1; ++i__) {
- work[i__] = s[i__ - (*n << 1)] * work[i__ - (*n << 1)] - avg;
- }
- _starpu_dlassq_(n, &work[(*n << 1) + 1], &c__1, &scale, &sumsq);
- std = scale * sqrt(sumsq / *n);
- if (std < tol * avg) {
- goto L999;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- t = (d__1 = a[i__ + i__ * a_dim1], abs(d__1));
- si = s[i__];
- c2 = (*n - 1) * t;
- c1 = (*n - 2) * (work[i__] - t * si);
- c0 = -(t * si) * si + work[i__] * 2 * si - *n * avg;
- d__ = c1 * c1 - c0 * 4 * c2;
- if (d__ <= 0.) {
- *info = -1;
- return 0;
- }
- si = c0 * -2 / (c1 + sqrt(d__));
- d__ = si - s[i__];
- u = 0.;
- if (up) {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- t = (d__1 = a[j + i__ * a_dim1], abs(d__1));
- u += s[j] * t;
- work[j] += d__ * t;
- }
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- t = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- u += s[j] * t;
- work[j] += d__ * t;
- }
- } else {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- t = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- u += s[j] * t;
- work[j] += d__ * t;
- }
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- t = (d__1 = a[j + i__ * a_dim1], abs(d__1));
- u += s[j] * t;
- work[j] += d__ * t;
- }
- }
- avg += (u + work[i__]) * d__ / *n;
- s[i__] = si;
- }
- }
- L999:
- smlnum = _starpu_dlamch_("SAFEMIN");
- bignum = 1. / smlnum;
- smin = bignum;
- smax = 0.;
- t = 1. / sqrt(avg);
- base = _starpu_dlamch_("B");
- u = 1. / log(base);
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = (integer) (u * log(s[i__] * t));
- s[i__] = pow_di(&base, &i__2);
- /* Computing MIN */
- d__1 = smin, d__2 = s[i__];
- smin = min(d__1,d__2);
- /* Computing MAX */
- d__1 = smax, d__2 = s[i__];
- smax = max(d__1,d__2);
- }
- *scond = max(smin,smlnum) / min(smax,bignum);
- return 0;
- } /* _starpu_dsyequb_ */
|