123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551 |
- /* dstevr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__10 = 10;
- static integer c__1 = 1;
- static integer c__2 = 2;
- static integer c__3 = 3;
- static integer c__4 = 4;
- /* Subroutine */ int _starpu_dstevr_(char *jobz, char *range, integer *n, doublereal *
- d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il,
- integer *iu, doublereal *abstol, integer *m, doublereal *w,
- doublereal *z__, integer *ldz, integer *isuppz, doublereal *work,
- integer *lwork, integer *iwork, integer *liwork, integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, jj;
- doublereal eps, vll, vuu, tmp1;
- integer imax;
- doublereal rmin, rmax;
- logical test;
- doublereal tnrm;
- integer itmp1;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal sigma;
- extern logical _starpu_lsame_(char *, char *);
- char order[1];
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer
- *, doublereal *, integer *);
- integer lwmin;
- logical wantz;
- extern doublereal _starpu_dlamch_(char *);
- logical alleig, indeig;
- integer iscale, ieeeok, indibl, indifl;
- logical valeig;
- doublereal safmin;
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal bignum;
- extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
- integer indisp;
- extern /* Subroutine */ int _starpu_dstein_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *, doublereal *,
- integer *, doublereal *, integer *, integer *, integer *),
- _starpu_dsterf_(integer *, doublereal *, doublereal *, integer *);
- integer indiwo;
- extern /* Subroutine */ int _starpu_dstebz_(char *, char *, integer *, doublereal
- *, doublereal *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *, doublereal *, integer *, integer *),
- _starpu_dstemr_(char *, char *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, integer *,
- logical *, doublereal *, integer *, integer *, integer *, integer
- *);
- integer liwmin;
- logical tryrac;
- integer nsplit;
- doublereal smlnum;
- logical lquery;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSTEVR computes selected eigenvalues and, optionally, eigenvectors */
- /* of a real symmetric tridiagonal matrix T. Eigenvalues and */
- /* eigenvectors can be selected by specifying either a range of values */
- /* or a range of indices for the desired eigenvalues. */
- /* Whenever possible, DSTEVR calls DSTEMR to compute the */
- /* eigenspectrum using Relatively Robust Representations. DSTEMR */
- /* computes eigenvalues by the dqds algorithm, while orthogonal */
- /* eigenvectors are computed from various "good" L D L^T representations */
- /* (also known as Relatively Robust Representations). Gram-Schmidt */
- /* orthogonalization is avoided as far as possible. More specifically, */
- /* the various steps of the algorithm are as follows. For the i-th */
- /* unreduced block of T, */
- /* (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T */
- /* is a relatively robust representation, */
- /* (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high */
- /* relative accuracy by the dqds algorithm, */
- /* (c) If there is a cluster of close eigenvalues, "choose" sigma_i */
- /* close to the cluster, and go to step (a), */
- /* (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, */
- /* compute the corresponding eigenvector by forming a */
- /* rank-revealing twisted factorization. */
- /* The desired accuracy of the output can be specified by the input */
- /* parameter ABSTOL. */
- /* For more details, see "A new O(n^2) algorithm for the symmetric */
- /* tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, */
- /* Computer Science Division Technical Report No. UCB//CSD-97-971, */
- /* UC Berkeley, May 1997. */
- /* Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested */
- /* on machines which conform to the ieee-754 floating point standard. */
- /* DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and */
- /* when partial spectrum requests are made. */
- /* Normal execution of DSTEMR may create NaNs and infinities and */
- /* hence may abort due to a floating point exception in environments */
- /* which do not handle NaNs and infinities in the ieee standard default */
- /* manner. */
- /* Arguments */
- /* ========= */
- /* JOBZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only; */
- /* = 'V': Compute eigenvalues and eigenvectors. */
- /* RANGE (input) CHARACTER*1 */
- /* = 'A': all eigenvalues will be found. */
- /* = 'V': all eigenvalues in the half-open interval (VL,VU] */
- /* will be found. */
- /* = 'I': the IL-th through IU-th eigenvalues will be found. */
- /* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */
- /* ********* DSTEIN are called */
- /* N (input) INTEGER */
- /* The order of the matrix. N >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the n diagonal elements of the tridiagonal matrix */
- /* A. */
- /* On exit, D may be multiplied by a constant factor chosen */
- /* to avoid over/underflow in computing the eigenvalues. */
- /* E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1)) */
- /* On entry, the (n-1) subdiagonal elements of the tridiagonal */
- /* matrix A in elements 1 to N-1 of E. */
- /* On exit, E may be multiplied by a constant factor chosen */
- /* to avoid over/underflow in computing the eigenvalues. */
- /* VL (input) DOUBLE PRECISION */
- /* VU (input) DOUBLE PRECISION */
- /* If RANGE='V', the lower and upper bounds of the interval to */
- /* be searched for eigenvalues. VL < VU. */
- /* Not referenced if RANGE = 'A' or 'I'. */
- /* IL (input) INTEGER */
- /* IU (input) INTEGER */
- /* If RANGE='I', the indices (in ascending order) of the */
- /* smallest and largest eigenvalues to be returned. */
- /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
- /* Not referenced if RANGE = 'A' or 'V'. */
- /* ABSTOL (input) DOUBLE PRECISION */
- /* The absolute error tolerance for the eigenvalues. */
- /* An approximate eigenvalue is accepted as converged */
- /* when it is determined to lie in an interval [a,b] */
- /* of width less than or equal to */
- /* ABSTOL + EPS * max( |a|,|b| ) , */
- /* where EPS is the machine precision. If ABSTOL is less than */
- /* or equal to zero, then EPS*|T| will be used in its place, */
- /* where |T| is the 1-norm of the tridiagonal matrix obtained */
- /* by reducing A to tridiagonal form. */
- /* See "Computing Small Singular Values of Bidiagonal Matrices */
- /* with Guaranteed High Relative Accuracy," by Demmel and */
- /* Kahan, LAPACK Working Note #3. */
- /* If high relative accuracy is important, set ABSTOL to */
- /* DLAMCH( 'Safe minimum' ). Doing so will guarantee that */
- /* eigenvalues are computed to high relative accuracy when */
- /* possible in future releases. The current code does not */
- /* make any guarantees about high relative accuracy, but */
- /* future releases will. See J. Barlow and J. Demmel, */
- /* "Computing Accurate Eigensystems of Scaled Diagonally */
- /* Dominant Matrices", LAPACK Working Note #7, for a discussion */
- /* of which matrices define their eigenvalues to high relative */
- /* accuracy. */
- /* M (output) INTEGER */
- /* The total number of eigenvalues found. 0 <= M <= N. */
- /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* The first M elements contain the selected eigenvalues in */
- /* ascending order. */
- /* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */
- /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
- /* contain the orthonormal eigenvectors of the matrix A */
- /* corresponding to the selected eigenvalues, with the i-th */
- /* column of Z holding the eigenvector associated with W(i). */
- /* Note: the user must ensure that at least max(1,M) columns are */
- /* supplied in the array Z; if RANGE = 'V', the exact value of M */
- /* is not known in advance and an upper bound must be used. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1, and if */
- /* JOBZ = 'V', LDZ >= max(1,N). */
- /* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */
- /* The support of the eigenvectors in Z, i.e., the indices */
- /* indicating the nonzero elements in Z. The i-th eigenvector */
- /* is nonzero only in elements ISUPPZ( 2*i-1 ) through */
- /* ISUPPZ( 2*i ). */
- /* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal (and */
- /* minimal) LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,20*N). */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal sizes of the WORK and IWORK */
- /* arrays, returns these values as the first entries of the WORK */
- /* and IWORK arrays, and no error message related to LWORK or */
- /* LIWORK is issued by XERBLA. */
- /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
- /* On exit, if INFO = 0, IWORK(1) returns the optimal (and */
- /* minimal) LIWORK. */
- /* LIWORK (input) INTEGER */
- /* The dimension of the array IWORK. LIWORK >= max(1,10*N). */
- /* If LIWORK = -1, then a workspace query is assumed; the */
- /* routine only calculates the optimal sizes of the WORK and */
- /* IWORK arrays, returns these values as the first entries of */
- /* the WORK and IWORK arrays, and no error message related to */
- /* LWORK or LIWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: Internal error */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Inderjit Dhillon, IBM Almaden, USA */
- /* Osni Marques, LBNL/NERSC, USA */
- /* Ken Stanley, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --isuppz;
- --work;
- --iwork;
- /* Function Body */
- ieeeok = _starpu_ilaenv_(&c__10, "DSTEVR", "N", &c__1, &c__2, &c__3, &c__4);
- wantz = _starpu_lsame_(jobz, "V");
- alleig = _starpu_lsame_(range, "A");
- valeig = _starpu_lsame_(range, "V");
- indeig = _starpu_lsame_(range, "I");
- lquery = *lwork == -1 || *liwork == -1;
- /* Computing MAX */
- i__1 = 1, i__2 = *n * 20;
- lwmin = max(i__1,i__2);
- /* Computing MAX */
- i__1 = 1, i__2 = *n * 10;
- liwmin = max(i__1,i__2);
- *info = 0;
- if (! (wantz || _starpu_lsame_(jobz, "N"))) {
- *info = -1;
- } else if (! (alleig || valeig || indeig)) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else {
- if (valeig) {
- if (*n > 0 && *vu <= *vl) {
- *info = -7;
- }
- } else if (indeig) {
- if (*il < 1 || *il > max(1,*n)) {
- *info = -8;
- } else if (*iu < min(*n,*il) || *iu > *n) {
- *info = -9;
- }
- }
- }
- if (*info == 0) {
- if (*ldz < 1 || wantz && *ldz < *n) {
- *info = -14;
- }
- }
- if (*info == 0) {
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- if (*lwork < lwmin && ! lquery) {
- *info = -17;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -19;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSTEVR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- *m = 0;
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- if (alleig || indeig) {
- *m = 1;
- w[1] = d__[1];
- } else {
- if (*vl < d__[1] && *vu >= d__[1]) {
- *m = 1;
- w[1] = d__[1];
- }
- }
- if (wantz) {
- z__[z_dim1 + 1] = 1.;
- }
- return 0;
- }
- /* Get machine constants. */
- safmin = _starpu_dlamch_("Safe minimum");
- eps = _starpu_dlamch_("Precision");
- smlnum = safmin / eps;
- bignum = 1. / smlnum;
- rmin = sqrt(smlnum);
- /* Computing MIN */
- d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
- rmax = min(d__1,d__2);
- /* Scale matrix to allowable range, if necessary. */
- iscale = 0;
- vll = *vl;
- vuu = *vu;
- tnrm = _starpu_dlanst_("M", n, &d__[1], &e[1]);
- if (tnrm > 0. && tnrm < rmin) {
- iscale = 1;
- sigma = rmin / tnrm;
- } else if (tnrm > rmax) {
- iscale = 1;
- sigma = rmax / tnrm;
- }
- if (iscale == 1) {
- _starpu_dscal_(n, &sigma, &d__[1], &c__1);
- i__1 = *n - 1;
- _starpu_dscal_(&i__1, &sigma, &e[1], &c__1);
- if (valeig) {
- vll = *vl * sigma;
- vuu = *vu * sigma;
- }
- }
- /* Initialize indices into workspaces. Note: These indices are used only */
- /* if DSTERF or DSTEMR fail. */
- /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */
- /* stores the block indices of each of the M<=N eigenvalues. */
- indibl = 1;
- /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */
- /* stores the starting and finishing indices of each block. */
- indisp = indibl + *n;
- /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
- /* that corresponding to eigenvectors that fail to converge in */
- /* DSTEIN. This information is discarded; if any fail, the driver */
- /* returns INFO > 0. */
- indifl = indisp + *n;
- /* INDIWO is the offset of the remaining integer workspace. */
- indiwo = indisp + *n;
- /* If all eigenvalues are desired, then */
- /* call DSTERF or DSTEMR. If this fails for some eigenvalue, then */
- /* try DSTEBZ. */
- test = FALSE_;
- if (indeig) {
- if (*il == 1 && *iu == *n) {
- test = TRUE_;
- }
- }
- if ((alleig || test) && ieeeok == 1) {
- i__1 = *n - 1;
- _starpu_dcopy_(&i__1, &e[1], &c__1, &work[1], &c__1);
- if (! wantz) {
- _starpu_dcopy_(n, &d__[1], &c__1, &w[1], &c__1);
- _starpu_dsterf_(n, &w[1], &work[1], info);
- } else {
- _starpu_dcopy_(n, &d__[1], &c__1, &work[*n + 1], &c__1);
- if (*abstol <= *n * 2. * eps) {
- tryrac = TRUE_;
- } else {
- tryrac = FALSE_;
- }
- i__1 = *lwork - (*n << 1);
- _starpu_dstemr_(jobz, "A", n, &work[*n + 1], &work[1], vl, vu, il, iu, m,
- &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &work[
- (*n << 1) + 1], &i__1, &iwork[1], liwork, info);
- }
- if (*info == 0) {
- *m = *n;
- goto L10;
- }
- *info = 0;
- }
- /* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */
- if (wantz) {
- *(unsigned char *)order = 'B';
- } else {
- *(unsigned char *)order = 'E';
- }
- _starpu_dstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, &
- nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[1], &iwork[
- indiwo], info);
- if (wantz) {
- _starpu_dstein_(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], &
- z__[z_offset], ldz, &work[1], &iwork[indiwo], &iwork[indifl],
- info);
- }
- /* If matrix was scaled, then rescale eigenvalues appropriately. */
- L10:
- if (iscale == 1) {
- if (*info == 0) {
- imax = *m;
- } else {
- imax = *info - 1;
- }
- d__1 = 1. / sigma;
- _starpu_dscal_(&imax, &d__1, &w[1], &c__1);
- }
- /* If eigenvalues are not in order, then sort them, along with */
- /* eigenvectors. */
- if (wantz) {
- i__1 = *m - 1;
- for (j = 1; j <= i__1; ++j) {
- i__ = 0;
- tmp1 = w[j];
- i__2 = *m;
- for (jj = j + 1; jj <= i__2; ++jj) {
- if (w[jj] < tmp1) {
- i__ = jj;
- tmp1 = w[jj];
- }
- /* L20: */
- }
- if (i__ != 0) {
- itmp1 = iwork[i__];
- w[i__] = w[j];
- iwork[i__] = iwork[j];
- w[j] = tmp1;
- iwork[j] = itmp1;
- _starpu_dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
- &c__1);
- }
- /* L30: */
- }
- }
- /* Causes problems with tests 19 & 20: */
- /* IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002 */
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- return 0;
- /* End of DSTEVR */
- } /* _starpu_dstevr_ */
|