123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462 |
- /* dsterf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__0 = 0;
- static integer c__1 = 1;
- static doublereal c_b32 = 1.;
- /* Subroutine */ int _starpu_dsterf_(integer *n, doublereal *d__, doublereal *e,
- integer *info)
- {
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2, d__3;
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
- /* Local variables */
- doublereal c__;
- integer i__, l, m;
- doublereal p, r__, s;
- integer l1;
- doublereal bb, rt1, rt2, eps, rte;
- integer lsv;
- doublereal eps2, oldc;
- integer lend, jtot;
- extern /* Subroutine */ int _starpu_dlae2_(doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *);
- doublereal gamma, alpha, sigma, anorm;
- extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
- integer iscale;
- extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- doublereal oldgam, safmin;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal safmax;
- extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dlasrt_(char *, integer *, doublereal *,
- integer *);
- integer lendsv;
- doublereal ssfmin;
- integer nmaxit;
- doublereal ssfmax;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSTERF computes all eigenvalues of a symmetric tridiagonal matrix */
- /* using the Pal-Walker-Kahan variant of the QL or QR algorithm. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix. N >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the n diagonal elements of the tridiagonal matrix. */
- /* On exit, if INFO = 0, the eigenvalues in ascending order. */
- /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, the (n-1) subdiagonal elements of the tridiagonal */
- /* matrix. */
- /* On exit, E has been destroyed. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: the algorithm failed to find all of the eigenvalues in */
- /* a total of 30*N iterations; if INFO = i, then i */
- /* elements of E have not converged to zero. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --e;
- --d__;
- /* Function Body */
- *info = 0;
- /* Quick return if possible */
- if (*n < 0) {
- *info = -1;
- i__1 = -(*info);
- _starpu_xerbla_("DSTERF", &i__1);
- return 0;
- }
- if (*n <= 1) {
- return 0;
- }
- /* Determine the unit roundoff for this environment. */
- eps = _starpu_dlamch_("E");
- /* Computing 2nd power */
- d__1 = eps;
- eps2 = d__1 * d__1;
- safmin = _starpu_dlamch_("S");
- safmax = 1. / safmin;
- ssfmax = sqrt(safmax) / 3.;
- ssfmin = sqrt(safmin) / eps2;
- /* Compute the eigenvalues of the tridiagonal matrix. */
- nmaxit = *n * 30;
- sigma = 0.;
- jtot = 0;
- /* Determine where the matrix splits and choose QL or QR iteration */
- /* for each block, according to whether top or bottom diagonal */
- /* element is smaller. */
- l1 = 1;
- L10:
- if (l1 > *n) {
- goto L170;
- }
- if (l1 > 1) {
- e[l1 - 1] = 0.;
- }
- i__1 = *n - 1;
- for (m = l1; m <= i__1; ++m) {
- if ((d__3 = e[m], abs(d__3)) <= sqrt((d__1 = d__[m], abs(d__1))) *
- sqrt((d__2 = d__[m + 1], abs(d__2))) * eps) {
- e[m] = 0.;
- goto L30;
- }
- /* L20: */
- }
- m = *n;
- L30:
- l = l1;
- lsv = l;
- lend = m;
- lendsv = lend;
- l1 = m + 1;
- if (lend == l) {
- goto L10;
- }
- /* Scale submatrix in rows and columns L to LEND */
- i__1 = lend - l + 1;
- anorm = _starpu_dlanst_("I", &i__1, &d__[l], &e[l]);
- iscale = 0;
- if (anorm > ssfmax) {
- iscale = 1;
- i__1 = lend - l + 1;
- _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
- info);
- } else if (anorm < ssfmin) {
- iscale = 2;
- i__1 = lend - l + 1;
- _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
- info);
- }
- i__1 = lend - 1;
- for (i__ = l; i__ <= i__1; ++i__) {
- /* Computing 2nd power */
- d__1 = e[i__];
- e[i__] = d__1 * d__1;
- /* L40: */
- }
- /* Choose between QL and QR iteration */
- if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
- lend = lsv;
- l = lendsv;
- }
- if (lend >= l) {
- /* QL Iteration */
- /* Look for small subdiagonal element. */
- L50:
- if (l != lend) {
- i__1 = lend - 1;
- for (m = l; m <= i__1; ++m) {
- if ((d__2 = e[m], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m
- + 1], abs(d__1))) {
- goto L70;
- }
- /* L60: */
- }
- }
- m = lend;
- L70:
- if (m < lend) {
- e[m] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L90;
- }
- /* If remaining matrix is 2 by 2, use DLAE2 to compute its */
- /* eigenvalues. */
- if (m == l + 1) {
- rte = sqrt(e[l]);
- _starpu_dlae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
- d__[l] = rt1;
- d__[l + 1] = rt2;
- e[l] = 0.;
- l += 2;
- if (l <= lend) {
- goto L50;
- }
- goto L150;
- }
- if (jtot == nmaxit) {
- goto L150;
- }
- ++jtot;
- /* Form shift. */
- rte = sqrt(e[l]);
- sigma = (d__[l + 1] - p) / (rte * 2.);
- r__ = _starpu_dlapy2_(&sigma, &c_b32);
- sigma = p - rte / (sigma + d_sign(&r__, &sigma));
- c__ = 1.;
- s = 0.;
- gamma = d__[m] - sigma;
- p = gamma * gamma;
- /* Inner loop */
- i__1 = l;
- for (i__ = m - 1; i__ >= i__1; --i__) {
- bb = e[i__];
- r__ = p + bb;
- if (i__ != m - 1) {
- e[i__ + 1] = s * r__;
- }
- oldc = c__;
- c__ = p / r__;
- s = bb / r__;
- oldgam = gamma;
- alpha = d__[i__];
- gamma = c__ * (alpha - sigma) - s * oldgam;
- d__[i__ + 1] = oldgam + (alpha - gamma);
- if (c__ != 0.) {
- p = gamma * gamma / c__;
- } else {
- p = oldc * bb;
- }
- /* L80: */
- }
- e[l] = s * p;
- d__[l] = sigma + gamma;
- goto L50;
- /* Eigenvalue found. */
- L90:
- d__[l] = p;
- ++l;
- if (l <= lend) {
- goto L50;
- }
- goto L150;
- } else {
- /* QR Iteration */
- /* Look for small superdiagonal element. */
- L100:
- i__1 = lend + 1;
- for (m = l; m >= i__1; --m) {
- if ((d__2 = e[m - 1], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m
- - 1], abs(d__1))) {
- goto L120;
- }
- /* L110: */
- }
- m = lend;
- L120:
- if (m > lend) {
- e[m - 1] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L140;
- }
- /* If remaining matrix is 2 by 2, use DLAE2 to compute its */
- /* eigenvalues. */
- if (m == l - 1) {
- rte = sqrt(e[l - 1]);
- _starpu_dlae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
- d__[l] = rt1;
- d__[l - 1] = rt2;
- e[l - 1] = 0.;
- l += -2;
- if (l >= lend) {
- goto L100;
- }
- goto L150;
- }
- if (jtot == nmaxit) {
- goto L150;
- }
- ++jtot;
- /* Form shift. */
- rte = sqrt(e[l - 1]);
- sigma = (d__[l - 1] - p) / (rte * 2.);
- r__ = _starpu_dlapy2_(&sigma, &c_b32);
- sigma = p - rte / (sigma + d_sign(&r__, &sigma));
- c__ = 1.;
- s = 0.;
- gamma = d__[m] - sigma;
- p = gamma * gamma;
- /* Inner loop */
- i__1 = l - 1;
- for (i__ = m; i__ <= i__1; ++i__) {
- bb = e[i__];
- r__ = p + bb;
- if (i__ != m) {
- e[i__ - 1] = s * r__;
- }
- oldc = c__;
- c__ = p / r__;
- s = bb / r__;
- oldgam = gamma;
- alpha = d__[i__ + 1];
- gamma = c__ * (alpha - sigma) - s * oldgam;
- d__[i__] = oldgam + (alpha - gamma);
- if (c__ != 0.) {
- p = gamma * gamma / c__;
- } else {
- p = oldc * bb;
- }
- /* L130: */
- }
- e[l - 1] = s * p;
- d__[l] = sigma + gamma;
- goto L100;
- /* Eigenvalue found. */
- L140:
- d__[l] = p;
- --l;
- if (l >= lend) {
- goto L100;
- }
- goto L150;
- }
- /* Undo scaling if necessary */
- L150:
- if (iscale == 1) {
- i__1 = lendsv - lsv + 1;
- _starpu_dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- }
- if (iscale == 2) {
- i__1 = lendsv - lsv + 1;
- _starpu_dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- }
- /* Check for no convergence to an eigenvalue after a total */
- /* of N*MAXIT iterations. */
- if (jtot < nmaxit) {
- goto L10;
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (e[i__] != 0.) {
- ++(*info);
- }
- /* L160: */
- }
- goto L180;
- /* Sort eigenvalues in increasing order. */
- L170:
- _starpu_dlasrt_("I", n, &d__[1], info);
- L180:
- return 0;
- /* End of DSTERF */
- } /* _starpu_dsterf_ */
|