dsterf.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. /* dsterf.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static integer c__0 = 0;
  15. static integer c__1 = 1;
  16. static doublereal c_b32 = 1.;
  17. /* Subroutine */ int _starpu_dsterf_(integer *n, doublereal *d__, doublereal *e,
  18. integer *info)
  19. {
  20. /* System generated locals */
  21. integer i__1;
  22. doublereal d__1, d__2, d__3;
  23. /* Builtin functions */
  24. double sqrt(doublereal), d_sign(doublereal *, doublereal *);
  25. /* Local variables */
  26. doublereal c__;
  27. integer i__, l, m;
  28. doublereal p, r__, s;
  29. integer l1;
  30. doublereal bb, rt1, rt2, eps, rte;
  31. integer lsv;
  32. doublereal eps2, oldc;
  33. integer lend, jtot;
  34. extern /* Subroutine */ int _starpu_dlae2_(doublereal *, doublereal *, doublereal
  35. *, doublereal *, doublereal *);
  36. doublereal gamma, alpha, sigma, anorm;
  37. extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
  38. integer iscale;
  39. extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *,
  40. doublereal *, doublereal *, integer *, integer *, doublereal *,
  41. integer *, integer *);
  42. doublereal oldgam, safmin;
  43. extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
  44. doublereal safmax;
  45. extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
  46. extern /* Subroutine */ int _starpu_dlasrt_(char *, integer *, doublereal *,
  47. integer *);
  48. integer lendsv;
  49. doublereal ssfmin;
  50. integer nmaxit;
  51. doublereal ssfmax;
  52. /* -- LAPACK routine (version 3.2) -- */
  53. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  54. /* November 2006 */
  55. /* .. Scalar Arguments .. */
  56. /* .. */
  57. /* .. Array Arguments .. */
  58. /* .. */
  59. /* Purpose */
  60. /* ======= */
  61. /* DSTERF computes all eigenvalues of a symmetric tridiagonal matrix */
  62. /* using the Pal-Walker-Kahan variant of the QL or QR algorithm. */
  63. /* Arguments */
  64. /* ========= */
  65. /* N (input) INTEGER */
  66. /* The order of the matrix. N >= 0. */
  67. /* D (input/output) DOUBLE PRECISION array, dimension (N) */
  68. /* On entry, the n diagonal elements of the tridiagonal matrix. */
  69. /* On exit, if INFO = 0, the eigenvalues in ascending order. */
  70. /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
  71. /* On entry, the (n-1) subdiagonal elements of the tridiagonal */
  72. /* matrix. */
  73. /* On exit, E has been destroyed. */
  74. /* INFO (output) INTEGER */
  75. /* = 0: successful exit */
  76. /* < 0: if INFO = -i, the i-th argument had an illegal value */
  77. /* > 0: the algorithm failed to find all of the eigenvalues in */
  78. /* a total of 30*N iterations; if INFO = i, then i */
  79. /* elements of E have not converged to zero. */
  80. /* ===================================================================== */
  81. /* .. Parameters .. */
  82. /* .. */
  83. /* .. Local Scalars .. */
  84. /* .. */
  85. /* .. External Functions .. */
  86. /* .. */
  87. /* .. External Subroutines .. */
  88. /* .. */
  89. /* .. Intrinsic Functions .. */
  90. /* .. */
  91. /* .. Executable Statements .. */
  92. /* Test the input parameters. */
  93. /* Parameter adjustments */
  94. --e;
  95. --d__;
  96. /* Function Body */
  97. *info = 0;
  98. /* Quick return if possible */
  99. if (*n < 0) {
  100. *info = -1;
  101. i__1 = -(*info);
  102. _starpu_xerbla_("DSTERF", &i__1);
  103. return 0;
  104. }
  105. if (*n <= 1) {
  106. return 0;
  107. }
  108. /* Determine the unit roundoff for this environment. */
  109. eps = _starpu_dlamch_("E");
  110. /* Computing 2nd power */
  111. d__1 = eps;
  112. eps2 = d__1 * d__1;
  113. safmin = _starpu_dlamch_("S");
  114. safmax = 1. / safmin;
  115. ssfmax = sqrt(safmax) / 3.;
  116. ssfmin = sqrt(safmin) / eps2;
  117. /* Compute the eigenvalues of the tridiagonal matrix. */
  118. nmaxit = *n * 30;
  119. sigma = 0.;
  120. jtot = 0;
  121. /* Determine where the matrix splits and choose QL or QR iteration */
  122. /* for each block, according to whether top or bottom diagonal */
  123. /* element is smaller. */
  124. l1 = 1;
  125. L10:
  126. if (l1 > *n) {
  127. goto L170;
  128. }
  129. if (l1 > 1) {
  130. e[l1 - 1] = 0.;
  131. }
  132. i__1 = *n - 1;
  133. for (m = l1; m <= i__1; ++m) {
  134. if ((d__3 = e[m], abs(d__3)) <= sqrt((d__1 = d__[m], abs(d__1))) *
  135. sqrt((d__2 = d__[m + 1], abs(d__2))) * eps) {
  136. e[m] = 0.;
  137. goto L30;
  138. }
  139. /* L20: */
  140. }
  141. m = *n;
  142. L30:
  143. l = l1;
  144. lsv = l;
  145. lend = m;
  146. lendsv = lend;
  147. l1 = m + 1;
  148. if (lend == l) {
  149. goto L10;
  150. }
  151. /* Scale submatrix in rows and columns L to LEND */
  152. i__1 = lend - l + 1;
  153. anorm = _starpu_dlanst_("I", &i__1, &d__[l], &e[l]);
  154. iscale = 0;
  155. if (anorm > ssfmax) {
  156. iscale = 1;
  157. i__1 = lend - l + 1;
  158. _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
  159. info);
  160. i__1 = lend - l;
  161. _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
  162. info);
  163. } else if (anorm < ssfmin) {
  164. iscale = 2;
  165. i__1 = lend - l + 1;
  166. _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
  167. info);
  168. i__1 = lend - l;
  169. _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
  170. info);
  171. }
  172. i__1 = lend - 1;
  173. for (i__ = l; i__ <= i__1; ++i__) {
  174. /* Computing 2nd power */
  175. d__1 = e[i__];
  176. e[i__] = d__1 * d__1;
  177. /* L40: */
  178. }
  179. /* Choose between QL and QR iteration */
  180. if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
  181. lend = lsv;
  182. l = lendsv;
  183. }
  184. if (lend >= l) {
  185. /* QL Iteration */
  186. /* Look for small subdiagonal element. */
  187. L50:
  188. if (l != lend) {
  189. i__1 = lend - 1;
  190. for (m = l; m <= i__1; ++m) {
  191. if ((d__2 = e[m], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m
  192. + 1], abs(d__1))) {
  193. goto L70;
  194. }
  195. /* L60: */
  196. }
  197. }
  198. m = lend;
  199. L70:
  200. if (m < lend) {
  201. e[m] = 0.;
  202. }
  203. p = d__[l];
  204. if (m == l) {
  205. goto L90;
  206. }
  207. /* If remaining matrix is 2 by 2, use DLAE2 to compute its */
  208. /* eigenvalues. */
  209. if (m == l + 1) {
  210. rte = sqrt(e[l]);
  211. _starpu_dlae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
  212. d__[l] = rt1;
  213. d__[l + 1] = rt2;
  214. e[l] = 0.;
  215. l += 2;
  216. if (l <= lend) {
  217. goto L50;
  218. }
  219. goto L150;
  220. }
  221. if (jtot == nmaxit) {
  222. goto L150;
  223. }
  224. ++jtot;
  225. /* Form shift. */
  226. rte = sqrt(e[l]);
  227. sigma = (d__[l + 1] - p) / (rte * 2.);
  228. r__ = _starpu_dlapy2_(&sigma, &c_b32);
  229. sigma = p - rte / (sigma + d_sign(&r__, &sigma));
  230. c__ = 1.;
  231. s = 0.;
  232. gamma = d__[m] - sigma;
  233. p = gamma * gamma;
  234. /* Inner loop */
  235. i__1 = l;
  236. for (i__ = m - 1; i__ >= i__1; --i__) {
  237. bb = e[i__];
  238. r__ = p + bb;
  239. if (i__ != m - 1) {
  240. e[i__ + 1] = s * r__;
  241. }
  242. oldc = c__;
  243. c__ = p / r__;
  244. s = bb / r__;
  245. oldgam = gamma;
  246. alpha = d__[i__];
  247. gamma = c__ * (alpha - sigma) - s * oldgam;
  248. d__[i__ + 1] = oldgam + (alpha - gamma);
  249. if (c__ != 0.) {
  250. p = gamma * gamma / c__;
  251. } else {
  252. p = oldc * bb;
  253. }
  254. /* L80: */
  255. }
  256. e[l] = s * p;
  257. d__[l] = sigma + gamma;
  258. goto L50;
  259. /* Eigenvalue found. */
  260. L90:
  261. d__[l] = p;
  262. ++l;
  263. if (l <= lend) {
  264. goto L50;
  265. }
  266. goto L150;
  267. } else {
  268. /* QR Iteration */
  269. /* Look for small superdiagonal element. */
  270. L100:
  271. i__1 = lend + 1;
  272. for (m = l; m >= i__1; --m) {
  273. if ((d__2 = e[m - 1], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m
  274. - 1], abs(d__1))) {
  275. goto L120;
  276. }
  277. /* L110: */
  278. }
  279. m = lend;
  280. L120:
  281. if (m > lend) {
  282. e[m - 1] = 0.;
  283. }
  284. p = d__[l];
  285. if (m == l) {
  286. goto L140;
  287. }
  288. /* If remaining matrix is 2 by 2, use DLAE2 to compute its */
  289. /* eigenvalues. */
  290. if (m == l - 1) {
  291. rte = sqrt(e[l - 1]);
  292. _starpu_dlae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
  293. d__[l] = rt1;
  294. d__[l - 1] = rt2;
  295. e[l - 1] = 0.;
  296. l += -2;
  297. if (l >= lend) {
  298. goto L100;
  299. }
  300. goto L150;
  301. }
  302. if (jtot == nmaxit) {
  303. goto L150;
  304. }
  305. ++jtot;
  306. /* Form shift. */
  307. rte = sqrt(e[l - 1]);
  308. sigma = (d__[l - 1] - p) / (rte * 2.);
  309. r__ = _starpu_dlapy2_(&sigma, &c_b32);
  310. sigma = p - rte / (sigma + d_sign(&r__, &sigma));
  311. c__ = 1.;
  312. s = 0.;
  313. gamma = d__[m] - sigma;
  314. p = gamma * gamma;
  315. /* Inner loop */
  316. i__1 = l - 1;
  317. for (i__ = m; i__ <= i__1; ++i__) {
  318. bb = e[i__];
  319. r__ = p + bb;
  320. if (i__ != m) {
  321. e[i__ - 1] = s * r__;
  322. }
  323. oldc = c__;
  324. c__ = p / r__;
  325. s = bb / r__;
  326. oldgam = gamma;
  327. alpha = d__[i__ + 1];
  328. gamma = c__ * (alpha - sigma) - s * oldgam;
  329. d__[i__] = oldgam + (alpha - gamma);
  330. if (c__ != 0.) {
  331. p = gamma * gamma / c__;
  332. } else {
  333. p = oldc * bb;
  334. }
  335. /* L130: */
  336. }
  337. e[l - 1] = s * p;
  338. d__[l] = sigma + gamma;
  339. goto L100;
  340. /* Eigenvalue found. */
  341. L140:
  342. d__[l] = p;
  343. --l;
  344. if (l >= lend) {
  345. goto L100;
  346. }
  347. goto L150;
  348. }
  349. /* Undo scaling if necessary */
  350. L150:
  351. if (iscale == 1) {
  352. i__1 = lendsv - lsv + 1;
  353. _starpu_dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
  354. n, info);
  355. }
  356. if (iscale == 2) {
  357. i__1 = lendsv - lsv + 1;
  358. _starpu_dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
  359. n, info);
  360. }
  361. /* Check for no convergence to an eigenvalue after a total */
  362. /* of N*MAXIT iterations. */
  363. if (jtot < nmaxit) {
  364. goto L10;
  365. }
  366. i__1 = *n - 1;
  367. for (i__ = 1; i__ <= i__1; ++i__) {
  368. if (e[i__] != 0.) {
  369. ++(*info);
  370. }
  371. /* L160: */
  372. }
  373. goto L180;
  374. /* Sort eigenvalues in increasing order. */
  375. L170:
  376. _starpu_dlasrt_("I", n, &d__[1], info);
  377. L180:
  378. return 0;
  379. /* End of DSTERF */
  380. } /* _starpu_dsterf_ */