123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622 |
- /* dsteqr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b9 = 0.;
- static doublereal c_b10 = 1.;
- static integer c__0 = 0;
- static integer c__1 = 1;
- static integer c__2 = 2;
- /* Subroutine */ int _starpu_dsteqr_(char *compz, integer *n, doublereal *d__,
- doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
- integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
- /* Local variables */
- doublereal b, c__, f, g;
- integer i__, j, k, l, m;
- doublereal p, r__, s;
- integer l1, ii, mm, lm1, mm1, nm1;
- doublereal rt1, rt2, eps;
- integer lsv;
- doublereal tst, eps2;
- integer lend, jtot;
- extern /* Subroutine */ int _starpu_dlae2_(doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *);
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dlasr_(char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *);
- doublereal anorm;
- extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlaev2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *);
- integer lendm1, lendp1;
- extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
- integer iscale;
- extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), _starpu_dlaset_(char *, integer *, integer
- *, doublereal *, doublereal *, doublereal *, integer *);
- doublereal safmin;
- extern /* Subroutine */ int _starpu_dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- doublereal safmax;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dlasrt_(char *, integer *, doublereal *,
- integer *);
- integer lendsv;
- doublereal ssfmin;
- integer nmaxit, icompz;
- doublereal ssfmax;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSTEQR computes all eigenvalues and, optionally, eigenvectors of a */
- /* symmetric tridiagonal matrix using the implicit QL or QR method. */
- /* The eigenvectors of a full or band symmetric matrix can also be found */
- /* if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to */
- /* tridiagonal form. */
- /* Arguments */
- /* ========= */
- /* COMPZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only. */
- /* = 'V': Compute eigenvalues and eigenvectors of the original */
- /* symmetric matrix. On entry, Z must contain the */
- /* orthogonal matrix used to reduce the original matrix */
- /* to tridiagonal form. */
- /* = 'I': Compute eigenvalues and eigenvectors of the */
- /* tridiagonal matrix. Z is initialized to the identity */
- /* matrix. */
- /* N (input) INTEGER */
- /* The order of the matrix. N >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the diagonal elements of the tridiagonal matrix. */
- /* On exit, if INFO = 0, the eigenvalues in ascending order. */
- /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, the (n-1) subdiagonal elements of the tridiagonal */
- /* matrix. */
- /* On exit, E has been destroyed. */
- /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
- /* On entry, if COMPZ = 'V', then Z contains the orthogonal */
- /* matrix used in the reduction to tridiagonal form. */
- /* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
- /* orthonormal eigenvectors of the original symmetric matrix, */
- /* and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
- /* of the symmetric tridiagonal matrix. */
- /* If COMPZ = 'N', then Z is not referenced. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1, and if */
- /* eigenvectors are desired, then LDZ >= max(1,N). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2)) */
- /* If COMPZ = 'N', then WORK is not referenced. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: the algorithm has failed to find all the eigenvalues in */
- /* a total of 30*N iterations; if INFO = i, then i */
- /* elements of E have not converged to zero; on exit, D */
- /* and E contain the elements of a symmetric tridiagonal */
- /* matrix which is orthogonally similar to the original */
- /* matrix. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- /* Function Body */
- *info = 0;
- if (_starpu_lsame_(compz, "N")) {
- icompz = 0;
- } else if (_starpu_lsame_(compz, "V")) {
- icompz = 1;
- } else if (_starpu_lsame_(compz, "I")) {
- icompz = 2;
- } else {
- icompz = -1;
- }
- if (icompz < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSTEQR", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- if (icompz == 2) {
- z__[z_dim1 + 1] = 1.;
- }
- return 0;
- }
- /* Determine the unit roundoff and over/underflow thresholds. */
- eps = _starpu_dlamch_("E");
- /* Computing 2nd power */
- d__1 = eps;
- eps2 = d__1 * d__1;
- safmin = _starpu_dlamch_("S");
- safmax = 1. / safmin;
- ssfmax = sqrt(safmax) / 3.;
- ssfmin = sqrt(safmin) / eps2;
- /* Compute the eigenvalues and eigenvectors of the tridiagonal */
- /* matrix. */
- if (icompz == 2) {
- _starpu_dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
- }
- nmaxit = *n * 30;
- jtot = 0;
- /* Determine where the matrix splits and choose QL or QR iteration */
- /* for each block, according to whether top or bottom diagonal */
- /* element is smaller. */
- l1 = 1;
- nm1 = *n - 1;
- L10:
- if (l1 > *n) {
- goto L160;
- }
- if (l1 > 1) {
- e[l1 - 1] = 0.;
- }
- if (l1 <= nm1) {
- i__1 = nm1;
- for (m = l1; m <= i__1; ++m) {
- tst = (d__1 = e[m], abs(d__1));
- if (tst == 0.) {
- goto L30;
- }
- if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
- + 1], abs(d__2))) * eps) {
- e[m] = 0.;
- goto L30;
- }
- /* L20: */
- }
- }
- m = *n;
- L30:
- l = l1;
- lsv = l;
- lend = m;
- lendsv = lend;
- l1 = m + 1;
- if (lend == l) {
- goto L10;
- }
- /* Scale submatrix in rows and columns L to LEND */
- i__1 = lend - l + 1;
- anorm = _starpu_dlanst_("I", &i__1, &d__[l], &e[l]);
- iscale = 0;
- if (anorm == 0.) {
- goto L10;
- }
- if (anorm > ssfmax) {
- iscale = 1;
- i__1 = lend - l + 1;
- _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
- info);
- } else if (anorm < ssfmin) {
- iscale = 2;
- i__1 = lend - l + 1;
- _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- _starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
- info);
- }
- /* Choose between QL and QR iteration */
- if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
- lend = lsv;
- l = lendsv;
- }
- if (lend > l) {
- /* QL Iteration */
- /* Look for small subdiagonal element. */
- L40:
- if (l != lend) {
- lendm1 = lend - 1;
- i__1 = lendm1;
- for (m = l; m <= i__1; ++m) {
- /* Computing 2nd power */
- d__2 = (d__1 = e[m], abs(d__1));
- tst = d__2 * d__2;
- if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
- + 1], abs(d__2)) + safmin) {
- goto L60;
- }
- /* L50: */
- }
- }
- m = lend;
- L60:
- if (m < lend) {
- e[m] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L80;
- }
- /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
- /* to compute its eigensystem. */
- if (m == l + 1) {
- if (icompz > 0) {
- _starpu_dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
- work[l] = c__;
- work[*n - 1 + l] = s;
- _starpu_dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
- z__[l * z_dim1 + 1], ldz);
- } else {
- _starpu_dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
- }
- d__[l] = rt1;
- d__[l + 1] = rt2;
- e[l] = 0.;
- l += 2;
- if (l <= lend) {
- goto L40;
- }
- goto L140;
- }
- if (jtot == nmaxit) {
- goto L140;
- }
- ++jtot;
- /* Form shift. */
- g = (d__[l + 1] - p) / (e[l] * 2.);
- r__ = _starpu_dlapy2_(&g, &c_b10);
- g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
- s = 1.;
- c__ = 1.;
- p = 0.;
- /* Inner loop */
- mm1 = m - 1;
- i__1 = l;
- for (i__ = mm1; i__ >= i__1; --i__) {
- f = s * e[i__];
- b = c__ * e[i__];
- _starpu_dlartg_(&g, &f, &c__, &s, &r__);
- if (i__ != m - 1) {
- e[i__ + 1] = r__;
- }
- g = d__[i__ + 1] - p;
- r__ = (d__[i__] - g) * s + c__ * 2. * b;
- p = s * r__;
- d__[i__ + 1] = g + p;
- g = c__ * r__ - b;
- /* If eigenvectors are desired, then save rotations. */
- if (icompz > 0) {
- work[i__] = c__;
- work[*n - 1 + i__] = -s;
- }
- /* L70: */
- }
- /* If eigenvectors are desired, then apply saved rotations. */
- if (icompz > 0) {
- mm = m - l + 1;
- _starpu_dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
- * z_dim1 + 1], ldz);
- }
- d__[l] -= p;
- e[l] = g;
- goto L40;
- /* Eigenvalue found. */
- L80:
- d__[l] = p;
- ++l;
- if (l <= lend) {
- goto L40;
- }
- goto L140;
- } else {
- /* QR Iteration */
- /* Look for small superdiagonal element. */
- L90:
- if (l != lend) {
- lendp1 = lend + 1;
- i__1 = lendp1;
- for (m = l; m >= i__1; --m) {
- /* Computing 2nd power */
- d__2 = (d__1 = e[m - 1], abs(d__1));
- tst = d__2 * d__2;
- if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
- - 1], abs(d__2)) + safmin) {
- goto L110;
- }
- /* L100: */
- }
- }
- m = lend;
- L110:
- if (m > lend) {
- e[m - 1] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L130;
- }
- /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
- /* to compute its eigensystem. */
- if (m == l - 1) {
- if (icompz > 0) {
- _starpu_dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
- ;
- work[m] = c__;
- work[*n - 1 + m] = s;
- _starpu_dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
- z__[(l - 1) * z_dim1 + 1], ldz);
- } else {
- _starpu_dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
- }
- d__[l - 1] = rt1;
- d__[l] = rt2;
- e[l - 1] = 0.;
- l += -2;
- if (l >= lend) {
- goto L90;
- }
- goto L140;
- }
- if (jtot == nmaxit) {
- goto L140;
- }
- ++jtot;
- /* Form shift. */
- g = (d__[l - 1] - p) / (e[l - 1] * 2.);
- r__ = _starpu_dlapy2_(&g, &c_b10);
- g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
- s = 1.;
- c__ = 1.;
- p = 0.;
- /* Inner loop */
- lm1 = l - 1;
- i__1 = lm1;
- for (i__ = m; i__ <= i__1; ++i__) {
- f = s * e[i__];
- b = c__ * e[i__];
- _starpu_dlartg_(&g, &f, &c__, &s, &r__);
- if (i__ != m) {
- e[i__ - 1] = r__;
- }
- g = d__[i__] - p;
- r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
- p = s * r__;
- d__[i__] = g + p;
- g = c__ * r__ - b;
- /* If eigenvectors are desired, then save rotations. */
- if (icompz > 0) {
- work[i__] = c__;
- work[*n - 1 + i__] = s;
- }
- /* L120: */
- }
- /* If eigenvectors are desired, then apply saved rotations. */
- if (icompz > 0) {
- mm = l - m + 1;
- _starpu_dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
- * z_dim1 + 1], ldz);
- }
- d__[l] -= p;
- e[lm1] = g;
- goto L90;
- /* Eigenvalue found. */
- L130:
- d__[l] = p;
- --l;
- if (l >= lend) {
- goto L90;
- }
- goto L140;
- }
- /* Undo scaling if necessary */
- L140:
- if (iscale == 1) {
- i__1 = lendsv - lsv + 1;
- _starpu_dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- i__1 = lendsv - lsv;
- _starpu_dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
- info);
- } else if (iscale == 2) {
- i__1 = lendsv - lsv + 1;
- _starpu_dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- i__1 = lendsv - lsv;
- _starpu_dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
- info);
- }
- /* Check for no convergence to an eigenvalue after a total */
- /* of N*MAXIT iterations. */
- if (jtot < nmaxit) {
- goto L10;
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (e[i__] != 0.) {
- ++(*info);
- }
- /* L150: */
- }
- goto L190;
- /* Order eigenvalues and eigenvectors. */
- L160:
- if (icompz == 0) {
- /* Use Quick Sort */
- _starpu_dlasrt_("I", n, &d__[1], info);
- } else {
- /* Use Selection Sort to minimize swaps of eigenvectors */
- i__1 = *n;
- for (ii = 2; ii <= i__1; ++ii) {
- i__ = ii - 1;
- k = i__;
- p = d__[i__];
- i__2 = *n;
- for (j = ii; j <= i__2; ++j) {
- if (d__[j] < p) {
- k = j;
- p = d__[j];
- }
- /* L170: */
- }
- if (k != i__) {
- d__[k] = d__[i__];
- d__[i__] = p;
- _starpu_dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
- &c__1);
- }
- /* L180: */
- }
- }
- L190:
- return 0;
- /* End of DSTEQR */
- } /* _starpu_dsteqr_ */
|