123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729 |
- /* dstemr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b18 = .001;
- /* Subroutine */ int _starpu_dstemr_(char *jobz, char *range, integer *n, doublereal *
- d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il,
- integer *iu, integer *m, doublereal *w, doublereal *z__, integer *ldz,
- integer *nzc, integer *isuppz, logical *tryrac, doublereal *work,
- integer *lwork, integer *iwork, integer *liwork, integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j;
- doublereal r1, r2;
- integer jj;
- doublereal cs;
- integer in;
- doublereal sn, wl, wu;
- integer iil, iiu;
- doublereal eps, tmp;
- integer indd, iend, jblk, wend;
- doublereal rmin, rmax;
- integer itmp;
- doublereal tnrm;
- extern /* Subroutine */ int _starpu_dlae2_(doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *);
- integer inde2, itmp2;
- doublereal rtol1, rtol2;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal scale;
- integer indgp;
- extern logical _starpu_lsame_(char *, char *);
- integer iinfo, iindw, ilast;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer
- *, doublereal *, integer *);
- integer lwmin;
- logical wantz;
- extern /* Subroutine */ int _starpu_dlaev2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *);
- extern doublereal _starpu_dlamch_(char *);
- logical alleig;
- integer ibegin;
- logical indeig;
- integer iindbl;
- logical valeig;
- extern /* Subroutine */ int _starpu_dlarrc_(char *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *, integer *, integer *), _starpu_dlarre_(char *,
- integer *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, integer *);
- integer wbegin;
- doublereal safmin;
- extern /* Subroutine */ int _starpu_dlarrj_(integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- integer *), _starpu_xerbla_(char *, integer *);
- doublereal bignum;
- integer inderr, iindwk, indgrs, offset;
- extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dlarrr_(integer *, doublereal *, doublereal *,
- integer *), _starpu_dlarrv_(integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), _starpu_dlasrt_(char *, integer *, doublereal *,
- integer *);
- doublereal thresh;
- integer iinspl, ifirst, indwrk, liwmin, nzcmin;
- doublereal pivmin;
- integer nsplit;
- doublereal smlnum;
- logical lquery, zquery;
- /* -- LAPACK computational routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSTEMR computes selected eigenvalues and, optionally, eigenvectors */
- /* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
- /* a well defined set of pairwise different real eigenvalues, the corresponding */
- /* real eigenvectors are pairwise orthogonal. */
- /* The spectrum may be computed either completely or partially by specifying */
- /* either an interval (VL,VU] or a range of indices IL:IU for the desired */
- /* eigenvalues. */
- /* Depending on the number of desired eigenvalues, these are computed either */
- /* by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */
- /* computed by the use of various suitable L D L^T factorizations near clusters */
- /* of close eigenvalues (referred to as RRRs, Relatively Robust */
- /* Representations). An informal sketch of the algorithm follows. */
- /* For each unreduced block (submatrix) of T, */
- /* (a) Compute T - sigma I = L D L^T, so that L and D */
- /* define all the wanted eigenvalues to high relative accuracy. */
- /* This means that small relative changes in the entries of D and L */
- /* cause only small relative changes in the eigenvalues and */
- /* eigenvectors. The standard (unfactored) representation of the */
- /* tridiagonal matrix T does not have this property in general. */
- /* (b) Compute the eigenvalues to suitable accuracy. */
- /* If the eigenvectors are desired, the algorithm attains full */
- /* accuracy of the computed eigenvalues only right before */
- /* the corresponding vectors have to be computed, see steps c) and d). */
- /* (c) For each cluster of close eigenvalues, select a new */
- /* shift close to the cluster, find a new factorization, and refine */
- /* the shifted eigenvalues to suitable accuracy. */
- /* (d) For each eigenvalue with a large enough relative separation compute */
- /* the corresponding eigenvector by forming a rank revealing twisted */
- /* factorization. Go back to (c) for any clusters that remain. */
- /* For more details, see: */
- /* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
- /* to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
- /* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
- /* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
- /* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
- /* 2004. Also LAPACK Working Note 154. */
- /* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
- /* tridiagonal eigenvalue/eigenvector problem", */
- /* Computer Science Division Technical Report No. UCB/CSD-97-971, */
- /* UC Berkeley, May 1997. */
- /* Notes: */
- /* 1.DSTEMR works only on machines which follow IEEE-754 */
- /* floating-point standard in their handling of infinities and NaNs. */
- /* This permits the use of efficient inner loops avoiding a check for */
- /* zero divisors. */
- /* Arguments */
- /* ========= */
- /* JOBZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only; */
- /* = 'V': Compute eigenvalues and eigenvectors. */
- /* RANGE (input) CHARACTER*1 */
- /* = 'A': all eigenvalues will be found. */
- /* = 'V': all eigenvalues in the half-open interval (VL,VU] */
- /* will be found. */
- /* = 'I': the IL-th through IU-th eigenvalues will be found. */
- /* N (input) INTEGER */
- /* The order of the matrix. N >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the N diagonal elements of the tridiagonal matrix */
- /* T. On exit, D is overwritten. */
- /* E (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the (N-1) subdiagonal elements of the tridiagonal */
- /* matrix T in elements 1 to N-1 of E. E(N) need not be set on */
- /* input, but is used internally as workspace. */
- /* On exit, E is overwritten. */
- /* VL (input) DOUBLE PRECISION */
- /* VU (input) DOUBLE PRECISION */
- /* If RANGE='V', the lower and upper bounds of the interval to */
- /* be searched for eigenvalues. VL < VU. */
- /* Not referenced if RANGE = 'A' or 'I'. */
- /* IL (input) INTEGER */
- /* IU (input) INTEGER */
- /* If RANGE='I', the indices (in ascending order) of the */
- /* smallest and largest eigenvalues to be returned. */
- /* 1 <= IL <= IU <= N, if N > 0. */
- /* Not referenced if RANGE = 'A' or 'V'. */
- /* M (output) INTEGER */
- /* The total number of eigenvalues found. 0 <= M <= N. */
- /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* The first M elements contain the selected eigenvalues in */
- /* ascending order. */
- /* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */
- /* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
- /* contain the orthonormal eigenvectors of the matrix T */
- /* corresponding to the selected eigenvalues, with the i-th */
- /* column of Z holding the eigenvector associated with W(i). */
- /* If JOBZ = 'N', then Z is not referenced. */
- /* Note: the user must ensure that at least max(1,M) columns are */
- /* supplied in the array Z; if RANGE = 'V', the exact value of M */
- /* is not known in advance and can be computed with a workspace */
- /* query by setting NZC = -1, see below. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1, and if */
- /* JOBZ = 'V', then LDZ >= max(1,N). */
- /* NZC (input) INTEGER */
- /* The number of eigenvectors to be held in the array Z. */
- /* If RANGE = 'A', then NZC >= max(1,N). */
- /* If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */
- /* If RANGE = 'I', then NZC >= IU-IL+1. */
- /* If NZC = -1, then a workspace query is assumed; the */
- /* routine calculates the number of columns of the array Z that */
- /* are needed to hold the eigenvectors. */
- /* This value is returned as the first entry of the Z array, and */
- /* no error message related to NZC is issued by XERBLA. */
- /* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) */
- /* The support of the eigenvectors in Z, i.e., the indices */
- /* indicating the nonzero elements in Z. The i-th computed eigenvector */
- /* is nonzero only in elements ISUPPZ( 2*i-1 ) through */
- /* ISUPPZ( 2*i ). This is relevant in the case when the matrix */
- /* is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
- /* TRYRAC (input/output) LOGICAL */
- /* If TRYRAC.EQ..TRUE., indicates that the code should check whether */
- /* the tridiagonal matrix defines its eigenvalues to high relative */
- /* accuracy. If so, the code uses relative-accuracy preserving */
- /* algorithms that might be (a bit) slower depending on the matrix. */
- /* If the matrix does not define its eigenvalues to high relative */
- /* accuracy, the code can uses possibly faster algorithms. */
- /* If TRYRAC.EQ..FALSE., the code is not required to guarantee */
- /* relatively accurate eigenvalues and can use the fastest possible */
- /* techniques. */
- /* On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */
- /* does not define its eigenvalues to high relative accuracy. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal */
- /* (and minimal) LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,18*N) */
- /* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* IWORK (workspace/output) INTEGER array, dimension (LIWORK) */
- /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
- /* LIWORK (input) INTEGER */
- /* The dimension of the array IWORK. LIWORK >= max(1,10*N) */
- /* if the eigenvectors are desired, and LIWORK >= max(1,8*N) */
- /* if only the eigenvalues are to be computed. */
- /* If LIWORK = -1, then a workspace query is assumed; the */
- /* routine only calculates the optimal size of the IWORK array, */
- /* returns this value as the first entry of the IWORK array, and */
- /* no error message related to LIWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* On exit, INFO */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = 1X, internal error in DLARRE, */
- /* if INFO = 2X, internal error in DLARRV. */
- /* Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
- /* the nonzero error code returned by DLARRE or */
- /* DLARRV, respectively. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Beresford Parlett, University of California, Berkeley, USA */
- /* Jim Demmel, University of California, Berkeley, USA */
- /* Inderjit Dhillon, University of Texas, Austin, USA */
- /* Osni Marques, LBNL/NERSC, USA */
- /* Christof Voemel, University of California, Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --isuppz;
- --work;
- --iwork;
- /* Function Body */
- wantz = _starpu_lsame_(jobz, "V");
- alleig = _starpu_lsame_(range, "A");
- valeig = _starpu_lsame_(range, "V");
- indeig = _starpu_lsame_(range, "I");
- lquery = *lwork == -1 || *liwork == -1;
- zquery = *nzc == -1;
- /* DSTEMR needs WORK of size 6*N, IWORK of size 3*N. */
- /* In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N. */
- /* Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N. */
- if (wantz) {
- lwmin = *n * 18;
- liwmin = *n * 10;
- } else {
- /* need less workspace if only the eigenvalues are wanted */
- lwmin = *n * 12;
- liwmin = *n << 3;
- }
- wl = 0.;
- wu = 0.;
- iil = 0;
- iiu = 0;
- if (valeig) {
- /* We do not reference VL, VU in the cases RANGE = 'I','A' */
- /* The interval (WL, WU] contains all the wanted eigenvalues. */
- /* It is either given by the user or computed in DLARRE. */
- wl = *vl;
- wu = *vu;
- } else if (indeig) {
- /* We do not reference IL, IU in the cases RANGE = 'V','A' */
- iil = *il;
- iiu = *iu;
- }
- *info = 0;
- if (! (wantz || _starpu_lsame_(jobz, "N"))) {
- *info = -1;
- } else if (! (alleig || valeig || indeig)) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (valeig && *n > 0 && wu <= wl) {
- *info = -7;
- } else if (indeig && (iil < 1 || iil > *n)) {
- *info = -8;
- } else if (indeig && (iiu < iil || iiu > *n)) {
- *info = -9;
- } else if (*ldz < 1 || wantz && *ldz < *n) {
- *info = -13;
- } else if (*lwork < lwmin && ! lquery) {
- *info = -17;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -19;
- }
- /* Get machine constants. */
- safmin = _starpu_dlamch_("Safe minimum");
- eps = _starpu_dlamch_("Precision");
- smlnum = safmin / eps;
- bignum = 1. / smlnum;
- rmin = sqrt(smlnum);
- /* Computing MIN */
- d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
- rmax = min(d__1,d__2);
- if (*info == 0) {
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- if (wantz && alleig) {
- nzcmin = *n;
- } else if (wantz && valeig) {
- _starpu_dlarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
- itmp2, info);
- } else if (wantz && indeig) {
- nzcmin = iiu - iil + 1;
- } else {
- /* WANTZ .EQ. FALSE. */
- nzcmin = 0;
- }
- if (zquery && *info == 0) {
- z__[z_dim1 + 1] = (doublereal) nzcmin;
- } else if (*nzc < nzcmin && ! zquery) {
- *info = -14;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSTEMR", &i__1);
- return 0;
- } else if (lquery || zquery) {
- return 0;
- }
- /* Handle N = 0, 1, and 2 cases immediately */
- *m = 0;
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- if (alleig || indeig) {
- *m = 1;
- w[1] = d__[1];
- } else {
- if (wl < d__[1] && wu >= d__[1]) {
- *m = 1;
- w[1] = d__[1];
- }
- }
- if (wantz && ! zquery) {
- z__[z_dim1 + 1] = 1.;
- isuppz[1] = 1;
- isuppz[2] = 1;
- }
- return 0;
- }
- if (*n == 2) {
- if (! wantz) {
- _starpu_dlae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
- } else if (wantz && ! zquery) {
- _starpu_dlaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
- }
- if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
- ++(*m);
- w[*m] = r2;
- if (wantz && ! zquery) {
- z__[*m * z_dim1 + 1] = -sn;
- z__[*m * z_dim1 + 2] = cs;
- /* Note: At most one of SN and CS can be zero. */
- if (sn != 0.) {
- if (cs != 0.) {
- isuppz[(*m << 1) - 1] = 1;
- isuppz[(*m << 1) - 1] = 2;
- } else {
- isuppz[(*m << 1) - 1] = 1;
- isuppz[(*m << 1) - 1] = 1;
- }
- } else {
- isuppz[(*m << 1) - 1] = 2;
- isuppz[*m * 2] = 2;
- }
- }
- }
- if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
- ++(*m);
- w[*m] = r1;
- if (wantz && ! zquery) {
- z__[*m * z_dim1 + 1] = cs;
- z__[*m * z_dim1 + 2] = sn;
- /* Note: At most one of SN and CS can be zero. */
- if (sn != 0.) {
- if (cs != 0.) {
- isuppz[(*m << 1) - 1] = 1;
- isuppz[(*m << 1) - 1] = 2;
- } else {
- isuppz[(*m << 1) - 1] = 1;
- isuppz[(*m << 1) - 1] = 1;
- }
- } else {
- isuppz[(*m << 1) - 1] = 2;
- isuppz[*m * 2] = 2;
- }
- }
- }
- return 0;
- }
- /* Continue with general N */
- indgrs = 1;
- inderr = (*n << 1) + 1;
- indgp = *n * 3 + 1;
- indd = (*n << 2) + 1;
- inde2 = *n * 5 + 1;
- indwrk = *n * 6 + 1;
- iinspl = 1;
- iindbl = *n + 1;
- iindw = (*n << 1) + 1;
- iindwk = *n * 3 + 1;
- /* Scale matrix to allowable range, if necessary. */
- /* The allowable range is related to the PIVMIN parameter; see the */
- /* comments in DLARRD. The preference for scaling small values */
- /* up is heuristic; we expect users' matrices not to be close to the */
- /* RMAX threshold. */
- scale = 1.;
- tnrm = _starpu_dlanst_("M", n, &d__[1], &e[1]);
- if (tnrm > 0. && tnrm < rmin) {
- scale = rmin / tnrm;
- } else if (tnrm > rmax) {
- scale = rmax / tnrm;
- }
- if (scale != 1.) {
- _starpu_dscal_(n, &scale, &d__[1], &c__1);
- i__1 = *n - 1;
- _starpu_dscal_(&i__1, &scale, &e[1], &c__1);
- tnrm *= scale;
- if (valeig) {
- /* If eigenvalues in interval have to be found, */
- /* scale (WL, WU] accordingly */
- wl *= scale;
- wu *= scale;
- }
- }
- /* Compute the desired eigenvalues of the tridiagonal after splitting */
- /* into smaller subblocks if the corresponding off-diagonal elements */
- /* are small */
- /* THRESH is the splitting parameter for DLARRE */
- /* A negative THRESH forces the old splitting criterion based on the */
- /* size of the off-diagonal. A positive THRESH switches to splitting */
- /* which preserves relative accuracy. */
- if (*tryrac) {
- /* Test whether the matrix warrants the more expensive relative approach. */
- _starpu_dlarrr_(n, &d__[1], &e[1], &iinfo);
- } else {
- /* The user does not care about relative accurately eigenvalues */
- iinfo = -1;
- }
- /* Set the splitting criterion */
- if (iinfo == 0) {
- thresh = eps;
- } else {
- thresh = -eps;
- /* relative accuracy is desired but T does not guarantee it */
- *tryrac = FALSE_;
- }
- if (*tryrac) {
- /* Copy original diagonal, needed to guarantee relative accuracy */
- _starpu_dcopy_(n, &d__[1], &c__1, &work[indd], &c__1);
- }
- /* Store the squares of the offdiagonal values of T */
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- /* Computing 2nd power */
- d__1 = e[j];
- work[inde2 + j - 1] = d__1 * d__1;
- /* L5: */
- }
- /* Set the tolerance parameters for bisection */
- if (! wantz) {
- /* DLARRE computes the eigenvalues to full precision. */
- rtol1 = eps * 4.;
- rtol2 = eps * 4.;
- } else {
- /* DLARRE computes the eigenvalues to less than full precision. */
- /* DLARRV will refine the eigenvalue approximations, and we can */
- /* need less accurate initial bisection in DLARRE. */
- /* Note: these settings do only affect the subset case and DLARRE */
- rtol1 = sqrt(eps);
- /* Computing MAX */
- d__1 = sqrt(eps) * .005, d__2 = eps * 4.;
- rtol2 = max(d__1,d__2);
- }
- _starpu_dlarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2], &
- rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &work[
- inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &work[
- indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
- if (iinfo != 0) {
- *info = abs(iinfo) + 10;
- return 0;
- }
- /* Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired */
- /* part of the spectrum. All desired eigenvalues are contained in */
- /* (WL,WU] */
- if (wantz) {
- /* Compute the desired eigenvectors corresponding to the computed */
- /* eigenvalues */
- _starpu_dlarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
- c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &work[
- indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs], &z__[
- z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[iindwk], &
- iinfo);
- if (iinfo != 0) {
- *info = abs(iinfo) + 20;
- return 0;
- }
- } else {
- /* DLARRE computes eigenvalues of the (shifted) root representation */
- /* DLARRV returns the eigenvalues of the unshifted matrix. */
- /* However, if the eigenvectors are not desired by the user, we need */
- /* to apply the corresponding shifts from DLARRE to obtain the */
- /* eigenvalues of the original matrix. */
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- itmp = iwork[iindbl + j - 1];
- w[j] += e[iwork[iinspl + itmp - 1]];
- /* L20: */
- }
- }
- if (*tryrac) {
- /* Refine computed eigenvalues so that they are relatively accurate */
- /* with respect to the original matrix T. */
- ibegin = 1;
- wbegin = 1;
- i__1 = iwork[iindbl + *m - 1];
- for (jblk = 1; jblk <= i__1; ++jblk) {
- iend = iwork[iinspl + jblk - 1];
- in = iend - ibegin + 1;
- wend = wbegin - 1;
- /* check if any eigenvalues have to be refined in this block */
- L36:
- if (wend < *m) {
- if (iwork[iindbl + wend] == jblk) {
- ++wend;
- goto L36;
- }
- }
- if (wend < wbegin) {
- ibegin = iend + 1;
- goto L39;
- }
- offset = iwork[iindw + wbegin - 1] - 1;
- ifirst = iwork[iindw + wbegin - 1];
- ilast = iwork[iindw + wend - 1];
- rtol2 = eps * 4.;
- _starpu_dlarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin - 1],
- &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &work[
- inderr + wbegin - 1], &work[indwrk], &iwork[iindwk], &
- pivmin, &tnrm, &iinfo);
- ibegin = iend + 1;
- wbegin = wend + 1;
- L39:
- ;
- }
- }
- /* If matrix was scaled, then rescale eigenvalues appropriately. */
- if (scale != 1.) {
- d__1 = 1. / scale;
- _starpu_dscal_(m, &d__1, &w[1], &c__1);
- }
- /* If eigenvalues are not in increasing order, then sort them, */
- /* possibly along with eigenvectors. */
- if (nsplit > 1) {
- if (! wantz) {
- _starpu_dlasrt_("I", m, &w[1], &iinfo);
- if (iinfo != 0) {
- *info = 3;
- return 0;
- }
- } else {
- i__1 = *m - 1;
- for (j = 1; j <= i__1; ++j) {
- i__ = 0;
- tmp = w[j];
- i__2 = *m;
- for (jj = j + 1; jj <= i__2; ++jj) {
- if (w[jj] < tmp) {
- i__ = jj;
- tmp = w[jj];
- }
- /* L50: */
- }
- if (i__ != 0) {
- w[i__] = w[j];
- w[j] = tmp;
- if (wantz) {
- _starpu_dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j *
- z_dim1 + 1], &c__1);
- itmp = isuppz[(i__ << 1) - 1];
- isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
- isuppz[(j << 1) - 1] = itmp;
- itmp = isuppz[i__ * 2];
- isuppz[i__ * 2] = isuppz[j * 2];
- isuppz[j * 2] = itmp;
- }
- }
- /* L60: */
- }
- }
- }
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- return 0;
- /* End of DSTEMR */
- } /* _starpu_dstemr_ */
|