123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- /* dstein.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__2 = 2;
- static integer c__1 = 1;
- static integer c_n1 = -1;
- /* Subroutine */ int _starpu_dstein_(integer *n, doublereal *d__, doublereal *e,
- integer *m, doublereal *w, integer *iblock, integer *isplit,
- doublereal *z__, integer *ldz, doublereal *work, integer *iwork,
- integer *ifail, integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2, i__3;
- doublereal d__1, d__2, d__3, d__4, d__5;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, b1, j1, bn;
- doublereal xj, scl, eps, sep, nrm, tol;
- integer its;
- doublereal xjm, ztr, eps1;
- integer jblk, nblk;
- extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- integer jmax;
- extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- integer iseed[4], gpind, iinfo;
- extern doublereal _starpu_dasum_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_daxpy_(integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *);
- doublereal ortol;
- integer indrv1, indrv2, indrv3, indrv4, indrv5;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlagtf_(integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *
- , integer *);
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *), _starpu_dlagts_(
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, doublereal *, doublereal *, integer *);
- integer nrmchk;
- extern /* Subroutine */ int _starpu_dlarnv_(integer *, integer *, integer *,
- doublereal *);
- integer blksiz;
- doublereal onenrm, dtpcrt, pertol;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSTEIN computes the eigenvectors of a real symmetric tridiagonal */
- /* matrix T corresponding to specified eigenvalues, using inverse */
- /* iteration. */
- /* The maximum number of iterations allowed for each eigenvector is */
- /* specified by an internal parameter MAXITS (currently set to 5). */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix. N >= 0. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The n diagonal elements of the tridiagonal matrix T. */
- /* E (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) subdiagonal elements of the tridiagonal matrix */
- /* T, in elements 1 to N-1. */
- /* M (input) INTEGER */
- /* The number of eigenvectors to be found. 0 <= M <= N. */
- /* W (input) DOUBLE PRECISION array, dimension (N) */
- /* The first M elements of W contain the eigenvalues for */
- /* which eigenvectors are to be computed. The eigenvalues */
- /* should be grouped by split-off block and ordered from */
- /* smallest to largest within the block. ( The output array */
- /* W from DSTEBZ with ORDER = 'B' is expected here. ) */
- /* IBLOCK (input) INTEGER array, dimension (N) */
- /* The submatrix indices associated with the corresponding */
- /* eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to */
- /* the first submatrix from the top, =2 if W(i) belongs to */
- /* the second submatrix, etc. ( The output array IBLOCK */
- /* from DSTEBZ is expected here. ) */
- /* ISPLIT (input) INTEGER array, dimension (N) */
- /* The splitting points, at which T breaks up into submatrices. */
- /* The first submatrix consists of rows/columns 1 to */
- /* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
- /* through ISPLIT( 2 ), etc. */
- /* ( The output array ISPLIT from DSTEBZ is expected here. ) */
- /* Z (output) DOUBLE PRECISION array, dimension (LDZ, M) */
- /* The computed eigenvectors. The eigenvector associated */
- /* with the eigenvalue W(i) is stored in the i-th column of */
- /* Z. Any vector which fails to converge is set to its current */
- /* iterate after MAXITS iterations. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= max(1,N). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (5*N) */
- /* IWORK (workspace) INTEGER array, dimension (N) */
- /* IFAIL (output) INTEGER array, dimension (M) */
- /* On normal exit, all elements of IFAIL are zero. */
- /* If one or more eigenvectors fail to converge after */
- /* MAXITS iterations, then their indices are stored in */
- /* array IFAIL. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, then i eigenvectors failed to converge */
- /* in MAXITS iterations. Their indices are stored in */
- /* array IFAIL. */
- /* Internal Parameters */
- /* =================== */
- /* MAXITS INTEGER, default = 5 */
- /* The maximum number of iterations performed. */
- /* EXTRA INTEGER, default = 2 */
- /* The number of iterations performed after norm growth */
- /* criterion is satisfied, should be at least 1. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- --w;
- --iblock;
- --isplit;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- --iwork;
- --ifail;
- /* Function Body */
- *info = 0;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ifail[i__] = 0;
- /* L10: */
- }
- if (*n < 0) {
- *info = -1;
- } else if (*m < 0 || *m > *n) {
- *info = -4;
- } else if (*ldz < max(1,*n)) {
- *info = -9;
- } else {
- i__1 = *m;
- for (j = 2; j <= i__1; ++j) {
- if (iblock[j] < iblock[j - 1]) {
- *info = -6;
- goto L30;
- }
- if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
- *info = -5;
- goto L30;
- }
- /* L20: */
- }
- L30:
- ;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSTEIN", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0 || *m == 0) {
- return 0;
- } else if (*n == 1) {
- z__[z_dim1 + 1] = 1.;
- return 0;
- }
- /* Get machine constants. */
- eps = _starpu_dlamch_("Precision");
- /* Initialize seed for random number generator DLARNV. */
- for (i__ = 1; i__ <= 4; ++i__) {
- iseed[i__ - 1] = 1;
- /* L40: */
- }
- /* Initialize pointers. */
- indrv1 = 0;
- indrv2 = indrv1 + *n;
- indrv3 = indrv2 + *n;
- indrv4 = indrv3 + *n;
- indrv5 = indrv4 + *n;
- /* Compute eigenvectors of matrix blocks. */
- j1 = 1;
- i__1 = iblock[*m];
- for (nblk = 1; nblk <= i__1; ++nblk) {
- /* Find starting and ending indices of block nblk. */
- if (nblk == 1) {
- b1 = 1;
- } else {
- b1 = isplit[nblk - 1] + 1;
- }
- bn = isplit[nblk];
- blksiz = bn - b1 + 1;
- if (blksiz == 1) {
- goto L60;
- }
- gpind = b1;
- /* Compute reorthogonalization criterion and stopping criterion. */
- onenrm = (d__1 = d__[b1], abs(d__1)) + (d__2 = e[b1], abs(d__2));
- /* Computing MAX */
- d__3 = onenrm, d__4 = (d__1 = d__[bn], abs(d__1)) + (d__2 = e[bn - 1],
- abs(d__2));
- onenrm = max(d__3,d__4);
- i__2 = bn - 1;
- for (i__ = b1 + 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__4 = onenrm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
- i__ - 1], abs(d__2)) + (d__3 = e[i__], abs(d__3));
- onenrm = max(d__4,d__5);
- /* L50: */
- }
- ortol = onenrm * .001;
- dtpcrt = sqrt(.1 / blksiz);
- /* Loop through eigenvalues of block nblk. */
- L60:
- jblk = 0;
- i__2 = *m;
- for (j = j1; j <= i__2; ++j) {
- if (iblock[j] != nblk) {
- j1 = j;
- goto L160;
- }
- ++jblk;
- xj = w[j];
- /* Skip all the work if the block size is one. */
- if (blksiz == 1) {
- work[indrv1 + 1] = 1.;
- goto L120;
- }
- /* If eigenvalues j and j-1 are too close, add a relatively */
- /* small perturbation. */
- if (jblk > 1) {
- eps1 = (d__1 = eps * xj, abs(d__1));
- pertol = eps1 * 10.;
- sep = xj - xjm;
- if (sep < pertol) {
- xj = xjm + pertol;
- }
- }
- its = 0;
- nrmchk = 0;
- /* Get random starting vector. */
- _starpu_dlarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);
- /* Copy the matrix T so it won't be destroyed in factorization. */
- _starpu_dcopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
- i__3 = blksiz - 1;
- _starpu_dcopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
- i__3 = blksiz - 1;
- _starpu_dcopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);
- /* Compute LU factors with partial pivoting ( PT = LU ) */
- tol = 0.;
- _starpu_dlagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
- indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);
- /* Update iteration count. */
- L70:
- ++its;
- if (its > 5) {
- goto L100;
- }
- /* Normalize and scale the righthand side vector Pb. */
- /* Computing MAX */
- d__2 = eps, d__3 = (d__1 = work[indrv4 + blksiz], abs(d__1));
- scl = blksiz * onenrm * max(d__2,d__3) / _starpu_dasum_(&blksiz, &work[
- indrv1 + 1], &c__1);
- _starpu_dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
- /* Solve the system LU = Pb. */
- _starpu_dlagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
- work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
- indrv1 + 1], &tol, &iinfo);
- /* Reorthogonalize by modified Gram-Schmidt if eigenvalues are */
- /* close enough. */
- if (jblk == 1) {
- goto L90;
- }
- if ((d__1 = xj - xjm, abs(d__1)) > ortol) {
- gpind = j;
- }
- if (gpind != j) {
- i__3 = j - 1;
- for (i__ = gpind; i__ <= i__3; ++i__) {
- ztr = -_starpu_ddot_(&blksiz, &work[indrv1 + 1], &c__1, &z__[b1 +
- i__ * z_dim1], &c__1);
- _starpu_daxpy_(&blksiz, &ztr, &z__[b1 + i__ * z_dim1], &c__1, &
- work[indrv1 + 1], &c__1);
- /* L80: */
- }
- }
- /* Check the infinity norm of the iterate. */
- L90:
- jmax = _starpu_idamax_(&blksiz, &work[indrv1 + 1], &c__1);
- nrm = (d__1 = work[indrv1 + jmax], abs(d__1));
- /* Continue for additional iterations after norm reaches */
- /* stopping criterion. */
- if (nrm < dtpcrt) {
- goto L70;
- }
- ++nrmchk;
- if (nrmchk < 3) {
- goto L70;
- }
- goto L110;
- /* If stopping criterion was not satisfied, update info and */
- /* store eigenvector number in array ifail. */
- L100:
- ++(*info);
- ifail[*info] = j;
- /* Accept iterate as jth eigenvector. */
- L110:
- scl = 1. / _starpu_dnrm2_(&blksiz, &work[indrv1 + 1], &c__1);
- jmax = _starpu_idamax_(&blksiz, &work[indrv1 + 1], &c__1);
- if (work[indrv1 + jmax] < 0.) {
- scl = -scl;
- }
- _starpu_dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
- L120:
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- z__[i__ + j * z_dim1] = 0.;
- /* L130: */
- }
- i__3 = blksiz;
- for (i__ = 1; i__ <= i__3; ++i__) {
- z__[b1 + i__ - 1 + j * z_dim1] = work[indrv1 + i__];
- /* L140: */
- }
- /* Save the shift to check eigenvalue spacing at next */
- /* iteration. */
- xjm = xj;
- /* L150: */
- }
- L160:
- ;
- }
- return 0;
- /* End of DSTEIN */
- } /* _starpu_dstein_ */
|