123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 |
- /* dstedc.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__9 = 9;
- static integer c__0 = 0;
- static integer c__2 = 2;
- static doublereal c_b17 = 0.;
- static doublereal c_b18 = 1.;
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dstedc_(char *compz, integer *n, doublereal *d__,
- doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
- integer *lwork, integer *iwork, integer *liwork, integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double log(doublereal);
- integer pow_ii(integer *, integer *);
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, k, m;
- doublereal p;
- integer ii, lgn;
- doublereal eps, tiny;
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer lwmin;
- extern /* Subroutine */ int _starpu_dlaed0_(integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- integer start;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), _starpu_dlacpy_(char *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *),
- _starpu_dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- integer finish;
- extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dsterf_(integer *, doublereal *, doublereal *,
- integer *), _starpu_dlasrt_(char *, integer *, doublereal *, integer *);
- integer liwmin, icompz;
- extern /* Subroutine */ int _starpu_dsteqr_(char *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *);
- doublereal orgnrm;
- logical lquery;
- integer smlsiz, storez, strtrw;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
- /* symmetric tridiagonal matrix using the divide and conquer method. */
- /* The eigenvectors of a full or band real symmetric matrix can also be */
- /* found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this */
- /* matrix to tridiagonal form. */
- /* This code makes very mild assumptions about floating point */
- /* arithmetic. It will work on machines with a guard digit in */
- /* add/subtract, or on those binary machines without guard digits */
- /* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
- /* It could conceivably fail on hexadecimal or decimal machines */
- /* without guard digits, but we know of none. See DLAED3 for details. */
- /* Arguments */
- /* ========= */
- /* COMPZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only. */
- /* = 'I': Compute eigenvectors of tridiagonal matrix also. */
- /* = 'V': Compute eigenvectors of original dense symmetric */
- /* matrix also. On entry, Z contains the orthogonal */
- /* matrix used to reduce the original matrix to */
- /* tridiagonal form. */
- /* N (input) INTEGER */
- /* The dimension of the symmetric tridiagonal matrix. N >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the diagonal elements of the tridiagonal matrix. */
- /* On exit, if INFO = 0, the eigenvalues in ascending order. */
- /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, the subdiagonal elements of the tridiagonal matrix. */
- /* On exit, E has been destroyed. */
- /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
- /* On entry, if COMPZ = 'V', then Z contains the orthogonal */
- /* matrix used in the reduction to tridiagonal form. */
- /* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
- /* orthonormal eigenvectors of the original symmetric matrix, */
- /* and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
- /* of the symmetric tridiagonal matrix. */
- /* If COMPZ = 'N', then Z is not referenced. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1. */
- /* If eigenvectors are desired, then LDZ >= max(1,N). */
- /* WORK (workspace/output) DOUBLE PRECISION array, */
- /* dimension (LWORK) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. */
- /* If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. */
- /* If COMPZ = 'V' and N > 1 then LWORK must be at least */
- /* ( 1 + 3*N + 2*N*lg N + 3*N**2 ), */
- /* where lg( N ) = smallest integer k such */
- /* that 2**k >= N. */
- /* If COMPZ = 'I' and N > 1 then LWORK must be at least */
- /* ( 1 + 4*N + N**2 ). */
- /* Note that for COMPZ = 'I' or 'V', then if N is less than or */
- /* equal to the minimum divide size, usually 25, then LWORK need */
- /* only be max(1,2*(N-1)). */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
- /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
- /* LIWORK (input) INTEGER */
- /* The dimension of the array IWORK. */
- /* If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. */
- /* If COMPZ = 'V' and N > 1 then LIWORK must be at least */
- /* ( 6 + 6*N + 5*N*lg N ). */
- /* If COMPZ = 'I' and N > 1 then LIWORK must be at least */
- /* ( 3 + 5*N ). */
- /* Note that for COMPZ = 'I' or 'V', then if N is less than or */
- /* equal to the minimum divide size, usually 25, then LIWORK */
- /* need only be 1. */
- /* If LIWORK = -1, then a workspace query is assumed; the */
- /* routine only calculates the optimal size of the IWORK array, */
- /* returns this value as the first entry of the IWORK array, and */
- /* no error message related to LIWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: The algorithm failed to compute an eigenvalue while */
- /* working on the submatrix lying in rows and columns */
- /* INFO/(N+1) through mod(INFO,N+1). */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Jeff Rutter, Computer Science Division, University of California */
- /* at Berkeley, USA */
- /* Modified by Francoise Tisseur, University of Tennessee. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1 || *liwork == -1;
- if (_starpu_lsame_(compz, "N")) {
- icompz = 0;
- } else if (_starpu_lsame_(compz, "V")) {
- icompz = 1;
- } else if (_starpu_lsame_(compz, "I")) {
- icompz = 2;
- } else {
- icompz = -1;
- }
- if (icompz < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
- *info = -6;
- }
- if (*info == 0) {
- /* Compute the workspace requirements */
- smlsiz = _starpu_ilaenv_(&c__9, "DSTEDC", " ", &c__0, &c__0, &c__0, &c__0);
- if (*n <= 1 || icompz == 0) {
- liwmin = 1;
- lwmin = 1;
- } else if (*n <= smlsiz) {
- liwmin = 1;
- lwmin = *n - 1 << 1;
- } else {
- lgn = (integer) (log((doublereal) (*n)) / log(2.));
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- if (icompz == 1) {
- /* Computing 2nd power */
- i__1 = *n;
- lwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;
- liwmin = *n * 6 + 6 + *n * 5 * lgn;
- } else if (icompz == 2) {
- /* Computing 2nd power */
- i__1 = *n;
- lwmin = (*n << 2) + 1 + i__1 * i__1;
- liwmin = *n * 5 + 3;
- }
- }
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- if (*lwork < lwmin && ! lquery) {
- *info = -8;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -10;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSTEDC", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- if (icompz != 0) {
- z__[z_dim1 + 1] = 1.;
- }
- return 0;
- }
- /* If the following conditional clause is removed, then the routine */
- /* will use the Divide and Conquer routine to compute only the */
- /* eigenvalues, which requires (3N + 3N**2) real workspace and */
- /* (2 + 5N + 2N lg(N)) integer workspace. */
- /* Since on many architectures DSTERF is much faster than any other */
- /* algorithm for finding eigenvalues only, it is used here */
- /* as the default. If the conditional clause is removed, then */
- /* information on the size of workspace needs to be changed. */
- /* If COMPZ = 'N', use DSTERF to compute the eigenvalues. */
- if (icompz == 0) {
- _starpu_dsterf_(n, &d__[1], &e[1], info);
- goto L50;
- }
- /* If N is smaller than the minimum divide size (SMLSIZ+1), then */
- /* solve the problem with another solver. */
- if (*n <= smlsiz) {
- _starpu_dsteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);
- } else {
- /* If COMPZ = 'V', the Z matrix must be stored elsewhere for later */
- /* use. */
- if (icompz == 1) {
- storez = *n * *n + 1;
- } else {
- storez = 1;
- }
- if (icompz == 2) {
- _starpu_dlaset_("Full", n, n, &c_b17, &c_b18, &z__[z_offset], ldz);
- }
- /* Scale. */
- orgnrm = _starpu_dlanst_("M", n, &d__[1], &e[1]);
- if (orgnrm == 0.) {
- goto L50;
- }
- eps = _starpu_dlamch_("Epsilon");
- start = 1;
- /* while ( START <= N ) */
- L10:
- if (start <= *n) {
- /* Let FINISH be the position of the next subdiagonal entry */
- /* such that E( FINISH ) <= TINY or FINISH = N if no such */
- /* subdiagonal exists. The matrix identified by the elements */
- /* between START and FINISH constitutes an independent */
- /* sub-problem. */
- finish = start;
- L20:
- if (finish < *n) {
- tiny = eps * sqrt((d__1 = d__[finish], abs(d__1))) * sqrt((
- d__2 = d__[finish + 1], abs(d__2)));
- if ((d__1 = e[finish], abs(d__1)) > tiny) {
- ++finish;
- goto L20;
- }
- }
- /* (Sub) Problem determined. Compute its size and solve it. */
- m = finish - start + 1;
- if (m == 1) {
- start = finish + 1;
- goto L10;
- }
- if (m > smlsiz) {
- /* Scale. */
- orgnrm = _starpu_dlanst_("M", &m, &d__[start], &e[start]);
- _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
- start], &m, info);
- i__1 = m - 1;
- i__2 = m - 1;
- _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
- start], &i__2, info);
- if (icompz == 1) {
- strtrw = 1;
- } else {
- strtrw = start;
- }
- _starpu_dlaed0_(&icompz, n, &m, &d__[start], &e[start], &z__[strtrw +
- start * z_dim1], ldz, &work[1], n, &work[storez], &
- iwork[1], info);
- if (*info != 0) {
- *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
- (m + 1) + start - 1;
- goto L50;
- }
- /* Scale back. */
- _starpu_dlascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
- start], &m, info);
- } else {
- if (icompz == 1) {
- /* Since QR won't update a Z matrix which is larger than */
- /* the length of D, we must solve the sub-problem in a */
- /* workspace and then multiply back into Z. */
- _starpu_dsteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &
- work[m * m + 1], info);
- _starpu_dlacpy_("A", n, &m, &z__[start * z_dim1 + 1], ldz, &work[
- storez], n);
- _starpu_dgemm_("N", "N", n, &m, &m, &c_b18, &work[storez], n, &
- work[1], &m, &c_b17, &z__[start * z_dim1 + 1],
- ldz);
- } else if (icompz == 2) {
- _starpu_dsteqr_("I", &m, &d__[start], &e[start], &z__[start +
- start * z_dim1], ldz, &work[1], info);
- } else {
- _starpu_dsterf_(&m, &d__[start], &e[start], info);
- }
- if (*info != 0) {
- *info = start * (*n + 1) + finish;
- goto L50;
- }
- }
- start = finish + 1;
- goto L10;
- }
- /* endwhile */
- /* If the problem split any number of times, then the eigenvalues */
- /* will not be properly ordered. Here we permute the eigenvalues */
- /* (and the associated eigenvectors) into ascending order. */
- if (m != *n) {
- if (icompz == 0) {
- /* Use Quick Sort */
- _starpu_dlasrt_("I", n, &d__[1], info);
- } else {
- /* Use Selection Sort to minimize swaps of eigenvectors */
- i__1 = *n;
- for (ii = 2; ii <= i__1; ++ii) {
- i__ = ii - 1;
- k = i__;
- p = d__[i__];
- i__2 = *n;
- for (j = ii; j <= i__2; ++j) {
- if (d__[j] < p) {
- k = j;
- p = d__[j];
- }
- /* L30: */
- }
- if (k != i__) {
- d__[k] = d__[i__];
- d__[i__] = p;
- _starpu_dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k *
- z_dim1 + 1], &c__1);
- }
- /* L40: */
- }
- }
- }
- }
- L50:
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- return 0;
- /* End of DSTEDC */
- } /* _starpu_dstedc_ */
|