dsptrs.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457
  1. /* dsptrs.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static doublereal c_b7 = -1.;
  15. static integer c__1 = 1;
  16. static doublereal c_b19 = 1.;
  17. /* Subroutine */ int _starpu_dsptrs_(char *uplo, integer *n, integer *nrhs,
  18. doublereal *ap, integer *ipiv, doublereal *b, integer *ldb, integer *
  19. info)
  20. {
  21. /* System generated locals */
  22. integer b_dim1, b_offset, i__1;
  23. doublereal d__1;
  24. /* Local variables */
  25. integer j, k;
  26. doublereal ak, bk;
  27. integer kc, kp;
  28. doublereal akm1, bkm1;
  29. extern /* Subroutine */ int _starpu_dger_(integer *, integer *, doublereal *,
  30. doublereal *, integer *, doublereal *, integer *, doublereal *,
  31. integer *);
  32. doublereal akm1k;
  33. extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
  34. integer *);
  35. extern logical _starpu_lsame_(char *, char *);
  36. doublereal denom;
  37. extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
  38. doublereal *, doublereal *, integer *, doublereal *, integer *,
  39. doublereal *, doublereal *, integer *), _starpu_dswap_(integer *,
  40. doublereal *, integer *, doublereal *, integer *);
  41. logical upper;
  42. extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
  43. /* -- LAPACK routine (version 3.2) -- */
  44. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  45. /* November 2006 */
  46. /* .. Scalar Arguments .. */
  47. /* .. */
  48. /* .. Array Arguments .. */
  49. /* .. */
  50. /* Purpose */
  51. /* ======= */
  52. /* DSPTRS solves a system of linear equations A*X = B with a real */
  53. /* symmetric matrix A stored in packed format using the factorization */
  54. /* A = U*D*U**T or A = L*D*L**T computed by DSPTRF. */
  55. /* Arguments */
  56. /* ========= */
  57. /* UPLO (input) CHARACTER*1 */
  58. /* Specifies whether the details of the factorization are stored */
  59. /* as an upper or lower triangular matrix. */
  60. /* = 'U': Upper triangular, form is A = U*D*U**T; */
  61. /* = 'L': Lower triangular, form is A = L*D*L**T. */
  62. /* N (input) INTEGER */
  63. /* The order of the matrix A. N >= 0. */
  64. /* NRHS (input) INTEGER */
  65. /* The number of right hand sides, i.e., the number of columns */
  66. /* of the matrix B. NRHS >= 0. */
  67. /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
  68. /* The block diagonal matrix D and the multipliers used to */
  69. /* obtain the factor U or L as computed by DSPTRF, stored as a */
  70. /* packed triangular matrix. */
  71. /* IPIV (input) INTEGER array, dimension (N) */
  72. /* Details of the interchanges and the block structure of D */
  73. /* as determined by DSPTRF. */
  74. /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
  75. /* On entry, the right hand side matrix B. */
  76. /* On exit, the solution matrix X. */
  77. /* LDB (input) INTEGER */
  78. /* The leading dimension of the array B. LDB >= max(1,N). */
  79. /* INFO (output) INTEGER */
  80. /* = 0: successful exit */
  81. /* < 0: if INFO = -i, the i-th argument had an illegal value */
  82. /* ===================================================================== */
  83. /* .. Parameters .. */
  84. /* .. */
  85. /* .. Local Scalars .. */
  86. /* .. */
  87. /* .. External Functions .. */
  88. /* .. */
  89. /* .. External Subroutines .. */
  90. /* .. */
  91. /* .. Intrinsic Functions .. */
  92. /* .. */
  93. /* .. Executable Statements .. */
  94. /* Parameter adjustments */
  95. --ap;
  96. --ipiv;
  97. b_dim1 = *ldb;
  98. b_offset = 1 + b_dim1;
  99. b -= b_offset;
  100. /* Function Body */
  101. *info = 0;
  102. upper = _starpu_lsame_(uplo, "U");
  103. if (! upper && ! _starpu_lsame_(uplo, "L")) {
  104. *info = -1;
  105. } else if (*n < 0) {
  106. *info = -2;
  107. } else if (*nrhs < 0) {
  108. *info = -3;
  109. } else if (*ldb < max(1,*n)) {
  110. *info = -7;
  111. }
  112. if (*info != 0) {
  113. i__1 = -(*info);
  114. _starpu_xerbla_("DSPTRS", &i__1);
  115. return 0;
  116. }
  117. /* Quick return if possible */
  118. if (*n == 0 || *nrhs == 0) {
  119. return 0;
  120. }
  121. if (upper) {
  122. /* Solve A*X = B, where A = U*D*U'. */
  123. /* First solve U*D*X = B, overwriting B with X. */
  124. /* K is the main loop index, decreasing from N to 1 in steps of */
  125. /* 1 or 2, depending on the size of the diagonal blocks. */
  126. k = *n;
  127. kc = *n * (*n + 1) / 2 + 1;
  128. L10:
  129. /* If K < 1, exit from loop. */
  130. if (k < 1) {
  131. goto L30;
  132. }
  133. kc -= k;
  134. if (ipiv[k] > 0) {
  135. /* 1 x 1 diagonal block */
  136. /* Interchange rows K and IPIV(K). */
  137. kp = ipiv[k];
  138. if (kp != k) {
  139. _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  140. }
  141. /* Multiply by inv(U(K)), where U(K) is the transformation */
  142. /* stored in column K of A. */
  143. i__1 = k - 1;
  144. _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc], &c__1, &b[k + b_dim1], ldb, &b[
  145. b_dim1 + 1], ldb);
  146. /* Multiply by the inverse of the diagonal block. */
  147. d__1 = 1. / ap[kc + k - 1];
  148. _starpu_dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
  149. --k;
  150. } else {
  151. /* 2 x 2 diagonal block */
  152. /* Interchange rows K-1 and -IPIV(K). */
  153. kp = -ipiv[k];
  154. if (kp != k - 1) {
  155. _starpu_dswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  156. }
  157. /* Multiply by inv(U(K)), where U(K) is the transformation */
  158. /* stored in columns K-1 and K of A. */
  159. i__1 = k - 2;
  160. _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc], &c__1, &b[k + b_dim1], ldb, &b[
  161. b_dim1 + 1], ldb);
  162. i__1 = k - 2;
  163. _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc - (k - 1)], &c__1, &b[k - 1 +
  164. b_dim1], ldb, &b[b_dim1 + 1], ldb);
  165. /* Multiply by the inverse of the diagonal block. */
  166. akm1k = ap[kc + k - 2];
  167. akm1 = ap[kc - 1] / akm1k;
  168. ak = ap[kc + k - 1] / akm1k;
  169. denom = akm1 * ak - 1.;
  170. i__1 = *nrhs;
  171. for (j = 1; j <= i__1; ++j) {
  172. bkm1 = b[k - 1 + j * b_dim1] / akm1k;
  173. bk = b[k + j * b_dim1] / akm1k;
  174. b[k - 1 + j * b_dim1] = (ak * bkm1 - bk) / denom;
  175. b[k + j * b_dim1] = (akm1 * bk - bkm1) / denom;
  176. /* L20: */
  177. }
  178. kc = kc - k + 1;
  179. k += -2;
  180. }
  181. goto L10;
  182. L30:
  183. /* Next solve U'*X = B, overwriting B with X. */
  184. /* K is the main loop index, increasing from 1 to N in steps of */
  185. /* 1 or 2, depending on the size of the diagonal blocks. */
  186. k = 1;
  187. kc = 1;
  188. L40:
  189. /* If K > N, exit from loop. */
  190. if (k > *n) {
  191. goto L50;
  192. }
  193. if (ipiv[k] > 0) {
  194. /* 1 x 1 diagonal block */
  195. /* Multiply by inv(U'(K)), where U(K) is the transformation */
  196. /* stored in column K of A. */
  197. i__1 = k - 1;
  198. _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &ap[kc]
  199. , &c__1, &c_b19, &b[k + b_dim1], ldb);
  200. /* Interchange rows K and IPIV(K). */
  201. kp = ipiv[k];
  202. if (kp != k) {
  203. _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  204. }
  205. kc += k;
  206. ++k;
  207. } else {
  208. /* 2 x 2 diagonal block */
  209. /* Multiply by inv(U'(K+1)), where U(K+1) is the transformation */
  210. /* stored in columns K and K+1 of A. */
  211. i__1 = k - 1;
  212. _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &ap[kc]
  213. , &c__1, &c_b19, &b[k + b_dim1], ldb);
  214. i__1 = k - 1;
  215. _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &ap[kc
  216. + k], &c__1, &c_b19, &b[k + 1 + b_dim1], ldb);
  217. /* Interchange rows K and -IPIV(K). */
  218. kp = -ipiv[k];
  219. if (kp != k) {
  220. _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  221. }
  222. kc = kc + (k << 1) + 1;
  223. k += 2;
  224. }
  225. goto L40;
  226. L50:
  227. ;
  228. } else {
  229. /* Solve A*X = B, where A = L*D*L'. */
  230. /* First solve L*D*X = B, overwriting B with X. */
  231. /* K is the main loop index, increasing from 1 to N in steps of */
  232. /* 1 or 2, depending on the size of the diagonal blocks. */
  233. k = 1;
  234. kc = 1;
  235. L60:
  236. /* If K > N, exit from loop. */
  237. if (k > *n) {
  238. goto L80;
  239. }
  240. if (ipiv[k] > 0) {
  241. /* 1 x 1 diagonal block */
  242. /* Interchange rows K and IPIV(K). */
  243. kp = ipiv[k];
  244. if (kp != k) {
  245. _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  246. }
  247. /* Multiply by inv(L(K)), where L(K) is the transformation */
  248. /* stored in column K of A. */
  249. if (k < *n) {
  250. i__1 = *n - k;
  251. _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc + 1], &c__1, &b[k + b_dim1],
  252. ldb, &b[k + 1 + b_dim1], ldb);
  253. }
  254. /* Multiply by the inverse of the diagonal block. */
  255. d__1 = 1. / ap[kc];
  256. _starpu_dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
  257. kc = kc + *n - k + 1;
  258. ++k;
  259. } else {
  260. /* 2 x 2 diagonal block */
  261. /* Interchange rows K+1 and -IPIV(K). */
  262. kp = -ipiv[k];
  263. if (kp != k + 1) {
  264. _starpu_dswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  265. }
  266. /* Multiply by inv(L(K)), where L(K) is the transformation */
  267. /* stored in columns K and K+1 of A. */
  268. if (k < *n - 1) {
  269. i__1 = *n - k - 1;
  270. _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc + 2], &c__1, &b[k + b_dim1],
  271. ldb, &b[k + 2 + b_dim1], ldb);
  272. i__1 = *n - k - 1;
  273. _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc + *n - k + 2], &c__1, &b[k +
  274. 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
  275. }
  276. /* Multiply by the inverse of the diagonal block. */
  277. akm1k = ap[kc + 1];
  278. akm1 = ap[kc] / akm1k;
  279. ak = ap[kc + *n - k + 1] / akm1k;
  280. denom = akm1 * ak - 1.;
  281. i__1 = *nrhs;
  282. for (j = 1; j <= i__1; ++j) {
  283. bkm1 = b[k + j * b_dim1] / akm1k;
  284. bk = b[k + 1 + j * b_dim1] / akm1k;
  285. b[k + j * b_dim1] = (ak * bkm1 - bk) / denom;
  286. b[k + 1 + j * b_dim1] = (akm1 * bk - bkm1) / denom;
  287. /* L70: */
  288. }
  289. kc = kc + (*n - k << 1) + 1;
  290. k += 2;
  291. }
  292. goto L60;
  293. L80:
  294. /* Next solve L'*X = B, overwriting B with X. */
  295. /* K is the main loop index, decreasing from N to 1 in steps of */
  296. /* 1 or 2, depending on the size of the diagonal blocks. */
  297. k = *n;
  298. kc = *n * (*n + 1) / 2 + 1;
  299. L90:
  300. /* If K < 1, exit from loop. */
  301. if (k < 1) {
  302. goto L100;
  303. }
  304. kc -= *n - k + 1;
  305. if (ipiv[k] > 0) {
  306. /* 1 x 1 diagonal block */
  307. /* Multiply by inv(L'(K)), where L(K) is the transformation */
  308. /* stored in column K of A. */
  309. if (k < *n) {
  310. i__1 = *n - k;
  311. _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
  312. ldb, &ap[kc + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
  313. }
  314. /* Interchange rows K and IPIV(K). */
  315. kp = ipiv[k];
  316. if (kp != k) {
  317. _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  318. }
  319. --k;
  320. } else {
  321. /* 2 x 2 diagonal block */
  322. /* Multiply by inv(L'(K-1)), where L(K-1) is the transformation */
  323. /* stored in columns K-1 and K of A. */
  324. if (k < *n) {
  325. i__1 = *n - k;
  326. _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
  327. ldb, &ap[kc + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
  328. i__1 = *n - k;
  329. _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
  330. ldb, &ap[kc - (*n - k)], &c__1, &c_b19, &b[k - 1 +
  331. b_dim1], ldb);
  332. }
  333. /* Interchange rows K and -IPIV(K). */
  334. kp = -ipiv[k];
  335. if (kp != k) {
  336. _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  337. }
  338. kc -= *n - k + 2;
  339. k += -2;
  340. }
  341. goto L90;
  342. L100:
  343. ;
  344. }
  345. return 0;
  346. /* End of DSPTRS */
  347. } /* _starpu_dsptrs_ */