123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 |
- /* dsptrs.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b7 = -1.;
- static integer c__1 = 1;
- static doublereal c_b19 = 1.;
- /* Subroutine */ int _starpu_dsptrs_(char *uplo, integer *n, integer *nrhs,
- doublereal *ap, integer *ipiv, doublereal *b, integer *ldb, integer *
- info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, i__1;
- doublereal d__1;
- /* Local variables */
- integer j, k;
- doublereal ak, bk;
- integer kc, kp;
- doublereal akm1, bkm1;
- extern /* Subroutine */ int _starpu_dger_(integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *);
- doublereal akm1k;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical _starpu_lsame_(char *, char *);
- doublereal denom;
- extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), _starpu_dswap_(integer *,
- doublereal *, integer *, doublereal *, integer *);
- logical upper;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSPTRS solves a system of linear equations A*X = B with a real */
- /* symmetric matrix A stored in packed format using the factorization */
- /* A = U*D*U**T or A = L*D*L**T computed by DSPTRF. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* Specifies whether the details of the factorization are stored */
- /* as an upper or lower triangular matrix. */
- /* = 'U': Upper triangular, form is A = U*D*U**T; */
- /* = 'L': Lower triangular, form is A = L*D*L**T. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrix B. NRHS >= 0. */
- /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
- /* The block diagonal matrix D and the multipliers used to */
- /* obtain the factor U or L as computed by DSPTRF, stored as a */
- /* packed triangular matrix. */
- /* IPIV (input) INTEGER array, dimension (N) */
- /* Details of the interchanges and the block structure of D */
- /* as determined by DSPTRF. */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the right hand side matrix B. */
- /* On exit, the solution matrix X. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --ap;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSPTRS", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0 || *nrhs == 0) {
- return 0;
- }
- if (upper) {
- /* Solve A*X = B, where A = U*D*U'. */
- /* First solve U*D*X = B, overwriting B with X. */
- /* K is the main loop index, decreasing from N to 1 in steps of */
- /* 1 or 2, depending on the size of the diagonal blocks. */
- k = *n;
- kc = *n * (*n + 1) / 2 + 1;
- L10:
- /* If K < 1, exit from loop. */
- if (k < 1) {
- goto L30;
- }
- kc -= k;
- if (ipiv[k] > 0) {
- /* 1 x 1 diagonal block */
- /* Interchange rows K and IPIV(K). */
- kp = ipiv[k];
- if (kp != k) {
- _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
- }
- /* Multiply by inv(U(K)), where U(K) is the transformation */
- /* stored in column K of A. */
- i__1 = k - 1;
- _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc], &c__1, &b[k + b_dim1], ldb, &b[
- b_dim1 + 1], ldb);
- /* Multiply by the inverse of the diagonal block. */
- d__1 = 1. / ap[kc + k - 1];
- _starpu_dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
- --k;
- } else {
- /* 2 x 2 diagonal block */
- /* Interchange rows K-1 and -IPIV(K). */
- kp = -ipiv[k];
- if (kp != k - 1) {
- _starpu_dswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
- }
- /* Multiply by inv(U(K)), where U(K) is the transformation */
- /* stored in columns K-1 and K of A. */
- i__1 = k - 2;
- _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc], &c__1, &b[k + b_dim1], ldb, &b[
- b_dim1 + 1], ldb);
- i__1 = k - 2;
- _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc - (k - 1)], &c__1, &b[k - 1 +
- b_dim1], ldb, &b[b_dim1 + 1], ldb);
- /* Multiply by the inverse of the diagonal block. */
- akm1k = ap[kc + k - 2];
- akm1 = ap[kc - 1] / akm1k;
- ak = ap[kc + k - 1] / akm1k;
- denom = akm1 * ak - 1.;
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- bkm1 = b[k - 1 + j * b_dim1] / akm1k;
- bk = b[k + j * b_dim1] / akm1k;
- b[k - 1 + j * b_dim1] = (ak * bkm1 - bk) / denom;
- b[k + j * b_dim1] = (akm1 * bk - bkm1) / denom;
- /* L20: */
- }
- kc = kc - k + 1;
- k += -2;
- }
- goto L10;
- L30:
- /* Next solve U'*X = B, overwriting B with X. */
- /* K is the main loop index, increasing from 1 to N in steps of */
- /* 1 or 2, depending on the size of the diagonal blocks. */
- k = 1;
- kc = 1;
- L40:
- /* If K > N, exit from loop. */
- if (k > *n) {
- goto L50;
- }
- if (ipiv[k] > 0) {
- /* 1 x 1 diagonal block */
- /* Multiply by inv(U'(K)), where U(K) is the transformation */
- /* stored in column K of A. */
- i__1 = k - 1;
- _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &ap[kc]
- , &c__1, &c_b19, &b[k + b_dim1], ldb);
- /* Interchange rows K and IPIV(K). */
- kp = ipiv[k];
- if (kp != k) {
- _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
- }
- kc += k;
- ++k;
- } else {
- /* 2 x 2 diagonal block */
- /* Multiply by inv(U'(K+1)), where U(K+1) is the transformation */
- /* stored in columns K and K+1 of A. */
- i__1 = k - 1;
- _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &ap[kc]
- , &c__1, &c_b19, &b[k + b_dim1], ldb);
- i__1 = k - 1;
- _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &ap[kc
- + k], &c__1, &c_b19, &b[k + 1 + b_dim1], ldb);
- /* Interchange rows K and -IPIV(K). */
- kp = -ipiv[k];
- if (kp != k) {
- _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
- }
- kc = kc + (k << 1) + 1;
- k += 2;
- }
- goto L40;
- L50:
- ;
- } else {
- /* Solve A*X = B, where A = L*D*L'. */
- /* First solve L*D*X = B, overwriting B with X. */
- /* K is the main loop index, increasing from 1 to N in steps of */
- /* 1 or 2, depending on the size of the diagonal blocks. */
- k = 1;
- kc = 1;
- L60:
- /* If K > N, exit from loop. */
- if (k > *n) {
- goto L80;
- }
- if (ipiv[k] > 0) {
- /* 1 x 1 diagonal block */
- /* Interchange rows K and IPIV(K). */
- kp = ipiv[k];
- if (kp != k) {
- _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
- }
- /* Multiply by inv(L(K)), where L(K) is the transformation */
- /* stored in column K of A. */
- if (k < *n) {
- i__1 = *n - k;
- _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc + 1], &c__1, &b[k + b_dim1],
- ldb, &b[k + 1 + b_dim1], ldb);
- }
- /* Multiply by the inverse of the diagonal block. */
- d__1 = 1. / ap[kc];
- _starpu_dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
- kc = kc + *n - k + 1;
- ++k;
- } else {
- /* 2 x 2 diagonal block */
- /* Interchange rows K+1 and -IPIV(K). */
- kp = -ipiv[k];
- if (kp != k + 1) {
- _starpu_dswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
- }
- /* Multiply by inv(L(K)), where L(K) is the transformation */
- /* stored in columns K and K+1 of A. */
- if (k < *n - 1) {
- i__1 = *n - k - 1;
- _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc + 2], &c__1, &b[k + b_dim1],
- ldb, &b[k + 2 + b_dim1], ldb);
- i__1 = *n - k - 1;
- _starpu_dger_(&i__1, nrhs, &c_b7, &ap[kc + *n - k + 2], &c__1, &b[k +
- 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
- }
- /* Multiply by the inverse of the diagonal block. */
- akm1k = ap[kc + 1];
- akm1 = ap[kc] / akm1k;
- ak = ap[kc + *n - k + 1] / akm1k;
- denom = akm1 * ak - 1.;
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- bkm1 = b[k + j * b_dim1] / akm1k;
- bk = b[k + 1 + j * b_dim1] / akm1k;
- b[k + j * b_dim1] = (ak * bkm1 - bk) / denom;
- b[k + 1 + j * b_dim1] = (akm1 * bk - bkm1) / denom;
- /* L70: */
- }
- kc = kc + (*n - k << 1) + 1;
- k += 2;
- }
- goto L60;
- L80:
- /* Next solve L'*X = B, overwriting B with X. */
- /* K is the main loop index, decreasing from N to 1 in steps of */
- /* 1 or 2, depending on the size of the diagonal blocks. */
- k = *n;
- kc = *n * (*n + 1) / 2 + 1;
- L90:
- /* If K < 1, exit from loop. */
- if (k < 1) {
- goto L100;
- }
- kc -= *n - k + 1;
- if (ipiv[k] > 0) {
- /* 1 x 1 diagonal block */
- /* Multiply by inv(L'(K)), where L(K) is the transformation */
- /* stored in column K of A. */
- if (k < *n) {
- i__1 = *n - k;
- _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
- ldb, &ap[kc + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
- }
- /* Interchange rows K and IPIV(K). */
- kp = ipiv[k];
- if (kp != k) {
- _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
- }
- --k;
- } else {
- /* 2 x 2 diagonal block */
- /* Multiply by inv(L'(K-1)), where L(K-1) is the transformation */
- /* stored in columns K-1 and K of A. */
- if (k < *n) {
- i__1 = *n - k;
- _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
- ldb, &ap[kc + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
- i__1 = *n - k;
- _starpu_dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
- ldb, &ap[kc - (*n - k)], &c__1, &c_b19, &b[k - 1 +
- b_dim1], ldb);
- }
- /* Interchange rows K and -IPIV(K). */
- kp = -ipiv[k];
- if (kp != k) {
- _starpu_dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
- }
- kc -= *n - k + 2;
- k += -2;
- }
- goto L90;
- L100:
- ;
- }
- return 0;
- /* End of DSPTRS */
- } /* _starpu_dsptrs_ */
|