123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412 |
- /* dsptri.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b11 = -1.;
- static doublereal c_b13 = 0.;
- /* Subroutine */ int _starpu_dsptri_(char *uplo, integer *n, doublereal *ap, integer *
- ipiv, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer i__1;
- doublereal d__1;
- /* Local variables */
- doublereal d__;
- integer j, k;
- doublereal t, ak;
- integer kc, kp, kx, kpc, npp;
- doublereal akp1;
- extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- doublereal temp, akkp1;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer
- *, doublereal *, integer *);
- integer kstep;
- extern /* Subroutine */ int _starpu_dspmv_(char *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- integer *);
- logical upper;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- integer kcnext;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSPTRI computes the inverse of a real symmetric indefinite matrix */
- /* A in packed storage using the factorization A = U*D*U**T or */
- /* A = L*D*L**T computed by DSPTRF. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* Specifies whether the details of the factorization are stored */
- /* as an upper or lower triangular matrix. */
- /* = 'U': Upper triangular, form is A = U*D*U**T; */
- /* = 'L': Lower triangular, form is A = L*D*L**T. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
- /* On entry, the block diagonal matrix D and the multipliers */
- /* used to obtain the factor U or L as computed by DSPTRF, */
- /* stored as a packed triangular matrix. */
- /* On exit, if INFO = 0, the (symmetric) inverse of the original */
- /* matrix, stored as a packed triangular matrix. The j-th column */
- /* of inv(A) is stored in the array AP as follows: */
- /* if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; */
- /* if UPLO = 'L', */
- /* AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. */
- /* IPIV (input) INTEGER array, dimension (N) */
- /* Details of the interchanges and the block structure of D */
- /* as determined by DSPTRF. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
- /* inverse could not be computed. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --work;
- --ipiv;
- --ap;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSPTRI", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Check that the diagonal matrix D is nonsingular. */
- if (upper) {
- /* Upper triangular storage: examine D from bottom to top */
- kp = *n * (*n + 1) / 2;
- for (*info = *n; *info >= 1; --(*info)) {
- if (ipiv[*info] > 0 && ap[kp] == 0.) {
- return 0;
- }
- kp -= *info;
- /* L10: */
- }
- } else {
- /* Lower triangular storage: examine D from top to bottom. */
- kp = 1;
- i__1 = *n;
- for (*info = 1; *info <= i__1; ++(*info)) {
- if (ipiv[*info] > 0 && ap[kp] == 0.) {
- return 0;
- }
- kp = kp + *n - *info + 1;
- /* L20: */
- }
- }
- *info = 0;
- if (upper) {
- /* Compute inv(A) from the factorization A = U*D*U'. */
- /* K is the main loop index, increasing from 1 to N in steps of */
- /* 1 or 2, depending on the size of the diagonal blocks. */
- k = 1;
- kc = 1;
- L30:
- /* If K > N, exit from loop. */
- if (k > *n) {
- goto L50;
- }
- kcnext = kc + k;
- if (ipiv[k] > 0) {
- /* 1 x 1 diagonal block */
- /* Invert the diagonal block. */
- ap[kc + k - 1] = 1. / ap[kc + k - 1];
- /* Compute column K of the inverse. */
- if (k > 1) {
- i__1 = k - 1;
- _starpu_dcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
- i__1 = k - 1;
- _starpu_dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &
- ap[kc], &c__1);
- i__1 = k - 1;
- ap[kc + k - 1] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kc], &
- c__1);
- }
- kstep = 1;
- } else {
- /* 2 x 2 diagonal block */
- /* Invert the diagonal block. */
- t = (d__1 = ap[kcnext + k - 1], abs(d__1));
- ak = ap[kc + k - 1] / t;
- akp1 = ap[kcnext + k] / t;
- akkp1 = ap[kcnext + k - 1] / t;
- d__ = t * (ak * akp1 - 1.);
- ap[kc + k - 1] = akp1 / d__;
- ap[kcnext + k] = ak / d__;
- ap[kcnext + k - 1] = -akkp1 / d__;
- /* Compute columns K and K+1 of the inverse. */
- if (k > 1) {
- i__1 = k - 1;
- _starpu_dcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
- i__1 = k - 1;
- _starpu_dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &
- ap[kc], &c__1);
- i__1 = k - 1;
- ap[kc + k - 1] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kc], &
- c__1);
- i__1 = k - 1;
- ap[kcnext + k - 1] -= _starpu_ddot_(&i__1, &ap[kc], &c__1, &ap[kcnext]
- , &c__1);
- i__1 = k - 1;
- _starpu_dcopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1);
- i__1 = k - 1;
- _starpu_dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &
- ap[kcnext], &c__1);
- i__1 = k - 1;
- ap[kcnext + k] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kcnext], &
- c__1);
- }
- kstep = 2;
- kcnext = kcnext + k + 1;
- }
- kp = (i__1 = ipiv[k], abs(i__1));
- if (kp != k) {
- /* Interchange rows and columns K and KP in the leading */
- /* submatrix A(1:k+1,1:k+1) */
- kpc = (kp - 1) * kp / 2 + 1;
- i__1 = kp - 1;
- _starpu_dswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1);
- kx = kpc + kp - 1;
- i__1 = k - 1;
- for (j = kp + 1; j <= i__1; ++j) {
- kx = kx + j - 1;
- temp = ap[kc + j - 1];
- ap[kc + j - 1] = ap[kx];
- ap[kx] = temp;
- /* L40: */
- }
- temp = ap[kc + k - 1];
- ap[kc + k - 1] = ap[kpc + kp - 1];
- ap[kpc + kp - 1] = temp;
- if (kstep == 2) {
- temp = ap[kc + k + k - 1];
- ap[kc + k + k - 1] = ap[kc + k + kp - 1];
- ap[kc + k + kp - 1] = temp;
- }
- }
- k += kstep;
- kc = kcnext;
- goto L30;
- L50:
- ;
- } else {
- /* Compute inv(A) from the factorization A = L*D*L'. */
- /* K is the main loop index, increasing from 1 to N in steps of */
- /* 1 or 2, depending on the size of the diagonal blocks. */
- npp = *n * (*n + 1) / 2;
- k = *n;
- kc = npp;
- L60:
- /* If K < 1, exit from loop. */
- if (k < 1) {
- goto L80;
- }
- kcnext = kc - (*n - k + 2);
- if (ipiv[k] > 0) {
- /* 1 x 1 diagonal block */
- /* Invert the diagonal block. */
- ap[kc] = 1. / ap[kc];
- /* Compute column K of the inverse. */
- if (k < *n) {
- i__1 = *n - k;
- _starpu_dcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
- i__1 = *n - k;
- _starpu_dspmv_(uplo, &i__1, &c_b11, &ap[kc + *n - k + 1], &work[1], &
- c__1, &c_b13, &ap[kc + 1], &c__1);
- i__1 = *n - k;
- ap[kc] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kc + 1], &c__1);
- }
- kstep = 1;
- } else {
- /* 2 x 2 diagonal block */
- /* Invert the diagonal block. */
- t = (d__1 = ap[kcnext + 1], abs(d__1));
- ak = ap[kcnext] / t;
- akp1 = ap[kc] / t;
- akkp1 = ap[kcnext + 1] / t;
- d__ = t * (ak * akp1 - 1.);
- ap[kcnext] = akp1 / d__;
- ap[kc] = ak / d__;
- ap[kcnext + 1] = -akkp1 / d__;
- /* Compute columns K-1 and K of the inverse. */
- if (k < *n) {
- i__1 = *n - k;
- _starpu_dcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
- i__1 = *n - k;
- _starpu_dspmv_(uplo, &i__1, &c_b11, &ap[kc + (*n - k + 1)], &work[1],
- &c__1, &c_b13, &ap[kc + 1], &c__1);
- i__1 = *n - k;
- ap[kc] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kc + 1], &c__1);
- i__1 = *n - k;
- ap[kcnext + 1] -= _starpu_ddot_(&i__1, &ap[kc + 1], &c__1, &ap[kcnext
- + 2], &c__1);
- i__1 = *n - k;
- _starpu_dcopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1);
- i__1 = *n - k;
- _starpu_dspmv_(uplo, &i__1, &c_b11, &ap[kc + (*n - k + 1)], &work[1],
- &c__1, &c_b13, &ap[kcnext + 2], &c__1);
- i__1 = *n - k;
- ap[kcnext] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kcnext + 2], &
- c__1);
- }
- kstep = 2;
- kcnext -= *n - k + 3;
- }
- kp = (i__1 = ipiv[k], abs(i__1));
- if (kp != k) {
- /* Interchange rows and columns K and KP in the trailing */
- /* submatrix A(k-1:n,k-1:n) */
- kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1;
- if (kp < *n) {
- i__1 = *n - kp;
- _starpu_dswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], &
- c__1);
- }
- kx = kc + kp - k;
- i__1 = kp - 1;
- for (j = k + 1; j <= i__1; ++j) {
- kx = kx + *n - j + 1;
- temp = ap[kc + j - k];
- ap[kc + j - k] = ap[kx];
- ap[kx] = temp;
- /* L70: */
- }
- temp = ap[kc];
- ap[kc] = ap[kpc];
- ap[kpc] = temp;
- if (kstep == 2) {
- temp = ap[kc - *n + k - 1];
- ap[kc - *n + k - 1] = ap[kc - *n + kp - 1];
- ap[kc - *n + kp - 1] = temp;
- }
- }
- k -= kstep;
- kc = kcnext;
- goto L60;
- L80:
- ;
- }
- return 0;
- /* End of DSPTRI */
- } /* _starpu_dsptri_ */
|