dsptrf.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629
  1. /* dsptrf.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static integer c__1 = 1;
  15. /* Subroutine */ int _starpu_dsptrf_(char *uplo, integer *n, doublereal *ap, integer *
  16. ipiv, integer *info)
  17. {
  18. /* System generated locals */
  19. integer i__1, i__2;
  20. doublereal d__1, d__2, d__3;
  21. /* Builtin functions */
  22. double sqrt(doublereal);
  23. /* Local variables */
  24. integer i__, j, k;
  25. doublereal t, r1, d11, d12, d21, d22;
  26. integer kc, kk, kp;
  27. doublereal wk;
  28. integer kx, knc, kpc, npp;
  29. doublereal wkm1, wkp1;
  30. integer imax, jmax;
  31. extern /* Subroutine */ int _starpu_dspr_(char *, integer *, doublereal *,
  32. doublereal *, integer *, doublereal *);
  33. doublereal alpha;
  34. extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
  35. integer *);
  36. extern logical _starpu_lsame_(char *, char *);
  37. extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *,
  38. doublereal *, integer *);
  39. integer kstep;
  40. logical upper;
  41. doublereal absakk;
  42. extern integer _starpu_idamax_(integer *, doublereal *, integer *);
  43. extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
  44. doublereal colmax, rowmax;
  45. /* -- LAPACK routine (version 3.2) -- */
  46. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  47. /* November 2006 */
  48. /* .. Scalar Arguments .. */
  49. /* .. */
  50. /* .. Array Arguments .. */
  51. /* .. */
  52. /* Purpose */
  53. /* ======= */
  54. /* DSPTRF computes the factorization of a real symmetric matrix A stored */
  55. /* in packed format using the Bunch-Kaufman diagonal pivoting method: */
  56. /* A = U*D*U**T or A = L*D*L**T */
  57. /* where U (or L) is a product of permutation and unit upper (lower) */
  58. /* triangular matrices, and D is symmetric and block diagonal with */
  59. /* 1-by-1 and 2-by-2 diagonal blocks. */
  60. /* Arguments */
  61. /* ========= */
  62. /* UPLO (input) CHARACTER*1 */
  63. /* = 'U': Upper triangle of A is stored; */
  64. /* = 'L': Lower triangle of A is stored. */
  65. /* N (input) INTEGER */
  66. /* The order of the matrix A. N >= 0. */
  67. /* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
  68. /* On entry, the upper or lower triangle of the symmetric matrix */
  69. /* A, packed columnwise in a linear array. The j-th column of A */
  70. /* is stored in the array AP as follows: */
  71. /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  72. /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  73. /* On exit, the block diagonal matrix D and the multipliers used */
  74. /* to obtain the factor U or L, stored as a packed triangular */
  75. /* matrix overwriting A (see below for further details). */
  76. /* IPIV (output) INTEGER array, dimension (N) */
  77. /* Details of the interchanges and the block structure of D. */
  78. /* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  79. /* interchanged and D(k,k) is a 1-by-1 diagonal block. */
  80. /* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
  81. /* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  82. /* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
  83. /* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
  84. /* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  85. /* INFO (output) INTEGER */
  86. /* = 0: successful exit */
  87. /* < 0: if INFO = -i, the i-th argument had an illegal value */
  88. /* > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
  89. /* has been completed, but the block diagonal matrix D is */
  90. /* exactly singular, and division by zero will occur if it */
  91. /* is used to solve a system of equations. */
  92. /* Further Details */
  93. /* =============== */
  94. /* 5-96 - Based on modifications by J. Lewis, Boeing Computer Services */
  95. /* Company */
  96. /* If UPLO = 'U', then A = U*D*U', where */
  97. /* U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  98. /* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  99. /* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  100. /* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  101. /* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  102. /* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  103. /* ( I v 0 ) k-s */
  104. /* U(k) = ( 0 I 0 ) s */
  105. /* ( 0 0 I ) n-k */
  106. /* k-s s n-k */
  107. /* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  108. /* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  109. /* and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  110. /* If UPLO = 'L', then A = L*D*L', where */
  111. /* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  112. /* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  113. /* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  114. /* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  115. /* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  116. /* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  117. /* ( I 0 0 ) k-1 */
  118. /* L(k) = ( 0 I 0 ) s */
  119. /* ( 0 v I ) n-k-s+1 */
  120. /* k-1 s n-k-s+1 */
  121. /* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  122. /* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  123. /* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  124. /* ===================================================================== */
  125. /* .. Parameters .. */
  126. /* .. */
  127. /* .. Local Scalars .. */
  128. /* .. */
  129. /* .. External Functions .. */
  130. /* .. */
  131. /* .. External Subroutines .. */
  132. /* .. */
  133. /* .. Intrinsic Functions .. */
  134. /* .. */
  135. /* .. Executable Statements .. */
  136. /* Test the input parameters. */
  137. /* Parameter adjustments */
  138. --ipiv;
  139. --ap;
  140. /* Function Body */
  141. *info = 0;
  142. upper = _starpu_lsame_(uplo, "U");
  143. if (! upper && ! _starpu_lsame_(uplo, "L")) {
  144. *info = -1;
  145. } else if (*n < 0) {
  146. *info = -2;
  147. }
  148. if (*info != 0) {
  149. i__1 = -(*info);
  150. _starpu_xerbla_("DSPTRF", &i__1);
  151. return 0;
  152. }
  153. /* Initialize ALPHA for use in choosing pivot block size. */
  154. alpha = (sqrt(17.) + 1.) / 8.;
  155. if (upper) {
  156. /* Factorize A as U*D*U' using the upper triangle of A */
  157. /* K is the main loop index, decreasing from N to 1 in steps of */
  158. /* 1 or 2 */
  159. k = *n;
  160. kc = (*n - 1) * *n / 2 + 1;
  161. L10:
  162. knc = kc;
  163. /* If K < 1, exit from loop */
  164. if (k < 1) {
  165. goto L110;
  166. }
  167. kstep = 1;
  168. /* Determine rows and columns to be interchanged and whether */
  169. /* a 1-by-1 or 2-by-2 pivot block will be used */
  170. absakk = (d__1 = ap[kc + k - 1], abs(d__1));
  171. /* IMAX is the row-index of the largest off-diagonal element in */
  172. /* column K, and COLMAX is its absolute value */
  173. if (k > 1) {
  174. i__1 = k - 1;
  175. imax = _starpu_idamax_(&i__1, &ap[kc], &c__1);
  176. colmax = (d__1 = ap[kc + imax - 1], abs(d__1));
  177. } else {
  178. colmax = 0.;
  179. }
  180. if (max(absakk,colmax) == 0.) {
  181. /* Column K is zero: set INFO and continue */
  182. if (*info == 0) {
  183. *info = k;
  184. }
  185. kp = k;
  186. } else {
  187. if (absakk >= alpha * colmax) {
  188. /* no interchange, use 1-by-1 pivot block */
  189. kp = k;
  190. } else {
  191. /* JMAX is the column-index of the largest off-diagonal */
  192. /* element in row IMAX, and ROWMAX is its absolute value */
  193. rowmax = 0.;
  194. jmax = imax;
  195. kx = imax * (imax + 1) / 2 + imax;
  196. i__1 = k;
  197. for (j = imax + 1; j <= i__1; ++j) {
  198. if ((d__1 = ap[kx], abs(d__1)) > rowmax) {
  199. rowmax = (d__1 = ap[kx], abs(d__1));
  200. jmax = j;
  201. }
  202. kx += j;
  203. /* L20: */
  204. }
  205. kpc = (imax - 1) * imax / 2 + 1;
  206. if (imax > 1) {
  207. i__1 = imax - 1;
  208. jmax = _starpu_idamax_(&i__1, &ap[kpc], &c__1);
  209. /* Computing MAX */
  210. d__2 = rowmax, d__3 = (d__1 = ap[kpc + jmax - 1], abs(
  211. d__1));
  212. rowmax = max(d__2,d__3);
  213. }
  214. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  215. /* no interchange, use 1-by-1 pivot block */
  216. kp = k;
  217. } else if ((d__1 = ap[kpc + imax - 1], abs(d__1)) >= alpha *
  218. rowmax) {
  219. /* interchange rows and columns K and IMAX, use 1-by-1 */
  220. /* pivot block */
  221. kp = imax;
  222. } else {
  223. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  224. /* pivot block */
  225. kp = imax;
  226. kstep = 2;
  227. }
  228. }
  229. kk = k - kstep + 1;
  230. if (kstep == 2) {
  231. knc = knc - k + 1;
  232. }
  233. if (kp != kk) {
  234. /* Interchange rows and columns KK and KP in the leading */
  235. /* submatrix A(1:k,1:k) */
  236. i__1 = kp - 1;
  237. _starpu_dswap_(&i__1, &ap[knc], &c__1, &ap[kpc], &c__1);
  238. kx = kpc + kp - 1;
  239. i__1 = kk - 1;
  240. for (j = kp + 1; j <= i__1; ++j) {
  241. kx = kx + j - 1;
  242. t = ap[knc + j - 1];
  243. ap[knc + j - 1] = ap[kx];
  244. ap[kx] = t;
  245. /* L30: */
  246. }
  247. t = ap[knc + kk - 1];
  248. ap[knc + kk - 1] = ap[kpc + kp - 1];
  249. ap[kpc + kp - 1] = t;
  250. if (kstep == 2) {
  251. t = ap[kc + k - 2];
  252. ap[kc + k - 2] = ap[kc + kp - 1];
  253. ap[kc + kp - 1] = t;
  254. }
  255. }
  256. /* Update the leading submatrix */
  257. if (kstep == 1) {
  258. /* 1-by-1 pivot block D(k): column k now holds */
  259. /* W(k) = U(k)*D(k) */
  260. /* where U(k) is the k-th column of U */
  261. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  262. /* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
  263. r1 = 1. / ap[kc + k - 1];
  264. i__1 = k - 1;
  265. d__1 = -r1;
  266. _starpu_dspr_(uplo, &i__1, &d__1, &ap[kc], &c__1, &ap[1]);
  267. /* Store U(k) in column k */
  268. i__1 = k - 1;
  269. _starpu_dscal_(&i__1, &r1, &ap[kc], &c__1);
  270. } else {
  271. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  272. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  273. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  274. /* of U */
  275. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  276. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
  277. /* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
  278. if (k > 2) {
  279. d12 = ap[k - 1 + (k - 1) * k / 2];
  280. d22 = ap[k - 1 + (k - 2) * (k - 1) / 2] / d12;
  281. d11 = ap[k + (k - 1) * k / 2] / d12;
  282. t = 1. / (d11 * d22 - 1.);
  283. d12 = t / d12;
  284. for (j = k - 2; j >= 1; --j) {
  285. wkm1 = d12 * (d11 * ap[j + (k - 2) * (k - 1) / 2] -
  286. ap[j + (k - 1) * k / 2]);
  287. wk = d12 * (d22 * ap[j + (k - 1) * k / 2] - ap[j + (k
  288. - 2) * (k - 1) / 2]);
  289. for (i__ = j; i__ >= 1; --i__) {
  290. ap[i__ + (j - 1) * j / 2] = ap[i__ + (j - 1) * j /
  291. 2] - ap[i__ + (k - 1) * k / 2] * wk - ap[
  292. i__ + (k - 2) * (k - 1) / 2] * wkm1;
  293. /* L40: */
  294. }
  295. ap[j + (k - 1) * k / 2] = wk;
  296. ap[j + (k - 2) * (k - 1) / 2] = wkm1;
  297. /* L50: */
  298. }
  299. }
  300. }
  301. }
  302. /* Store details of the interchanges in IPIV */
  303. if (kstep == 1) {
  304. ipiv[k] = kp;
  305. } else {
  306. ipiv[k] = -kp;
  307. ipiv[k - 1] = -kp;
  308. }
  309. /* Decrease K and return to the start of the main loop */
  310. k -= kstep;
  311. kc = knc - k;
  312. goto L10;
  313. } else {
  314. /* Factorize A as L*D*L' using the lower triangle of A */
  315. /* K is the main loop index, increasing from 1 to N in steps of */
  316. /* 1 or 2 */
  317. k = 1;
  318. kc = 1;
  319. npp = *n * (*n + 1) / 2;
  320. L60:
  321. knc = kc;
  322. /* If K > N, exit from loop */
  323. if (k > *n) {
  324. goto L110;
  325. }
  326. kstep = 1;
  327. /* Determine rows and columns to be interchanged and whether */
  328. /* a 1-by-1 or 2-by-2 pivot block will be used */
  329. absakk = (d__1 = ap[kc], abs(d__1));
  330. /* IMAX is the row-index of the largest off-diagonal element in */
  331. /* column K, and COLMAX is its absolute value */
  332. if (k < *n) {
  333. i__1 = *n - k;
  334. imax = k + _starpu_idamax_(&i__1, &ap[kc + 1], &c__1);
  335. colmax = (d__1 = ap[kc + imax - k], abs(d__1));
  336. } else {
  337. colmax = 0.;
  338. }
  339. if (max(absakk,colmax) == 0.) {
  340. /* Column K is zero: set INFO and continue */
  341. if (*info == 0) {
  342. *info = k;
  343. }
  344. kp = k;
  345. } else {
  346. if (absakk >= alpha * colmax) {
  347. /* no interchange, use 1-by-1 pivot block */
  348. kp = k;
  349. } else {
  350. /* JMAX is the column-index of the largest off-diagonal */
  351. /* element in row IMAX, and ROWMAX is its absolute value */
  352. rowmax = 0.;
  353. kx = kc + imax - k;
  354. i__1 = imax - 1;
  355. for (j = k; j <= i__1; ++j) {
  356. if ((d__1 = ap[kx], abs(d__1)) > rowmax) {
  357. rowmax = (d__1 = ap[kx], abs(d__1));
  358. jmax = j;
  359. }
  360. kx = kx + *n - j;
  361. /* L70: */
  362. }
  363. kpc = npp - (*n - imax + 1) * (*n - imax + 2) / 2 + 1;
  364. if (imax < *n) {
  365. i__1 = *n - imax;
  366. jmax = imax + _starpu_idamax_(&i__1, &ap[kpc + 1], &c__1);
  367. /* Computing MAX */
  368. d__2 = rowmax, d__3 = (d__1 = ap[kpc + jmax - imax], abs(
  369. d__1));
  370. rowmax = max(d__2,d__3);
  371. }
  372. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  373. /* no interchange, use 1-by-1 pivot block */
  374. kp = k;
  375. } else if ((d__1 = ap[kpc], abs(d__1)) >= alpha * rowmax) {
  376. /* interchange rows and columns K and IMAX, use 1-by-1 */
  377. /* pivot block */
  378. kp = imax;
  379. } else {
  380. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  381. /* pivot block */
  382. kp = imax;
  383. kstep = 2;
  384. }
  385. }
  386. kk = k + kstep - 1;
  387. if (kstep == 2) {
  388. knc = knc + *n - k + 1;
  389. }
  390. if (kp != kk) {
  391. /* Interchange rows and columns KK and KP in the trailing */
  392. /* submatrix A(k:n,k:n) */
  393. if (kp < *n) {
  394. i__1 = *n - kp;
  395. _starpu_dswap_(&i__1, &ap[knc + kp - kk + 1], &c__1, &ap[kpc + 1],
  396. &c__1);
  397. }
  398. kx = knc + kp - kk;
  399. i__1 = kp - 1;
  400. for (j = kk + 1; j <= i__1; ++j) {
  401. kx = kx + *n - j + 1;
  402. t = ap[knc + j - kk];
  403. ap[knc + j - kk] = ap[kx];
  404. ap[kx] = t;
  405. /* L80: */
  406. }
  407. t = ap[knc];
  408. ap[knc] = ap[kpc];
  409. ap[kpc] = t;
  410. if (kstep == 2) {
  411. t = ap[kc + 1];
  412. ap[kc + 1] = ap[kc + kp - k];
  413. ap[kc + kp - k] = t;
  414. }
  415. }
  416. /* Update the trailing submatrix */
  417. if (kstep == 1) {
  418. /* 1-by-1 pivot block D(k): column k now holds */
  419. /* W(k) = L(k)*D(k) */
  420. /* where L(k) is the k-th column of L */
  421. if (k < *n) {
  422. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  423. /* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
  424. r1 = 1. / ap[kc];
  425. i__1 = *n - k;
  426. d__1 = -r1;
  427. _starpu_dspr_(uplo, &i__1, &d__1, &ap[kc + 1], &c__1, &ap[kc + *n
  428. - k + 1]);
  429. /* Store L(k) in column K */
  430. i__1 = *n - k;
  431. _starpu_dscal_(&i__1, &r1, &ap[kc + 1], &c__1);
  432. }
  433. } else {
  434. /* 2-by-2 pivot block D(k): columns K and K+1 now hold */
  435. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  436. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  437. /* of L */
  438. if (k < *n - 1) {
  439. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  440. /* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )' */
  441. /* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )' */
  442. d21 = ap[k + 1 + (k - 1) * ((*n << 1) - k) / 2];
  443. d11 = ap[k + 1 + k * ((*n << 1) - k - 1) / 2] / d21;
  444. d22 = ap[k + (k - 1) * ((*n << 1) - k) / 2] / d21;
  445. t = 1. / (d11 * d22 - 1.);
  446. d21 = t / d21;
  447. i__1 = *n;
  448. for (j = k + 2; j <= i__1; ++j) {
  449. wk = d21 * (d11 * ap[j + (k - 1) * ((*n << 1) - k) /
  450. 2] - ap[j + k * ((*n << 1) - k - 1) / 2]);
  451. wkp1 = d21 * (d22 * ap[j + k * ((*n << 1) - k - 1) /
  452. 2] - ap[j + (k - 1) * ((*n << 1) - k) / 2]);
  453. i__2 = *n;
  454. for (i__ = j; i__ <= i__2; ++i__) {
  455. ap[i__ + (j - 1) * ((*n << 1) - j) / 2] = ap[i__
  456. + (j - 1) * ((*n << 1) - j) / 2] - ap[i__
  457. + (k - 1) * ((*n << 1) - k) / 2] * wk -
  458. ap[i__ + k * ((*n << 1) - k - 1) / 2] *
  459. wkp1;
  460. /* L90: */
  461. }
  462. ap[j + (k - 1) * ((*n << 1) - k) / 2] = wk;
  463. ap[j + k * ((*n << 1) - k - 1) / 2] = wkp1;
  464. /* L100: */
  465. }
  466. }
  467. }
  468. }
  469. /* Store details of the interchanges in IPIV */
  470. if (kstep == 1) {
  471. ipiv[k] = kp;
  472. } else {
  473. ipiv[k] = -kp;
  474. ipiv[k + 1] = -kp;
  475. }
  476. /* Increase K and return to the start of the main loop */
  477. k += kstep;
  478. kc = knc + *n - k + 2;
  479. goto L60;
  480. }
  481. L110:
  482. return 0;
  483. /* End of DSPTRF */
  484. } /* _starpu_dsptrf_ */