123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 |
- /* dspgvd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dspgvd_(integer *itype, char *jobz, char *uplo, integer *
- n, doublereal *ap, doublereal *bp, doublereal *w, doublereal *z__,
- integer *ldz, doublereal *work, integer *lwork, integer *iwork,
- integer *liwork, integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1;
- doublereal d__1, d__2;
- /* Local variables */
- integer j, neig;
- extern logical _starpu_lsame_(char *, char *);
- integer lwmin;
- char trans[1];
- logical upper;
- extern /* Subroutine */ int _starpu_dtpmv_(char *, char *, char *, integer *,
- doublereal *, doublereal *, integer *),
- _starpu_dtpsv_(char *, char *, char *, integer *, doublereal *,
- doublereal *, integer *);
- logical wantz;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *), _starpu_dspevd_(
- char *, char *, integer *, doublereal *, doublereal *, doublereal
- *, integer *, doublereal *, integer *, integer *, integer *,
- integer *);
- integer liwmin;
- extern /* Subroutine */ int _starpu_dpptrf_(char *, integer *, doublereal *,
- integer *), _starpu_dspgst_(integer *, char *, integer *,
- doublereal *, doublereal *, integer *);
- logical lquery;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSPGVD computes all the eigenvalues, and optionally, the eigenvectors */
- /* of a real generalized symmetric-definite eigenproblem, of the form */
- /* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */
- /* B are assumed to be symmetric, stored in packed format, and B is also */
- /* positive definite. */
- /* If eigenvectors are desired, it uses a divide and conquer algorithm. */
- /* The divide and conquer algorithm makes very mild assumptions about */
- /* floating point arithmetic. It will work on machines with a guard */
- /* digit in add/subtract, or on those binary machines without guard */
- /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
- /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
- /* without guard digits, but we know of none. */
- /* Arguments */
- /* ========= */
- /* ITYPE (input) INTEGER */
- /* Specifies the problem type to be solved: */
- /* = 1: A*x = (lambda)*B*x */
- /* = 2: A*B*x = (lambda)*x */
- /* = 3: B*A*x = (lambda)*x */
- /* JOBZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only; */
- /* = 'V': Compute eigenvalues and eigenvectors. */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangles of A and B are stored; */
- /* = 'L': Lower triangles of A and B are stored. */
- /* N (input) INTEGER */
- /* The order of the matrices A and B. N >= 0. */
- /* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
- /* On entry, the upper or lower triangle of the symmetric matrix */
- /* A, packed columnwise in a linear array. The j-th column of A */
- /* is stored in the array AP as follows: */
- /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
- /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
- /* On exit, the contents of AP are destroyed. */
- /* BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
- /* On entry, the upper or lower triangle of the symmetric matrix */
- /* B, packed columnwise in a linear array. The j-th column of B */
- /* is stored in the array BP as follows: */
- /* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
- /* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */
- /* On exit, the triangular factor U or L from the Cholesky */
- /* factorization B = U**T*U or B = L*L**T, in the same storage */
- /* format as B. */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* If INFO = 0, the eigenvalues in ascending order. */
- /* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */
- /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
- /* eigenvectors. The eigenvectors are normalized as follows: */
- /* if ITYPE = 1 or 2, Z**T*B*Z = I; */
- /* if ITYPE = 3, Z**T*inv(B)*Z = I. */
- /* If JOBZ = 'N', then Z is not referenced. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1, and if */
- /* JOBZ = 'V', LDZ >= max(1,N). */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the required LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. */
- /* If N <= 1, LWORK >= 1. */
- /* If JOBZ = 'N' and N > 1, LWORK >= 2*N. */
- /* If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the required sizes of the WORK and IWORK */
- /* arrays, returns these values as the first entries of the WORK */
- /* and IWORK arrays, and no error message related to LWORK or */
- /* LIWORK is issued by XERBLA. */
- /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
- /* On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */
- /* LIWORK (input) INTEGER */
- /* The dimension of the array IWORK. */
- /* If JOBZ = 'N' or N <= 1, LIWORK >= 1. */
- /* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */
- /* If LIWORK = -1, then a workspace query is assumed; the */
- /* routine only calculates the required sizes of the WORK and */
- /* IWORK arrays, returns these values as the first entries of */
- /* the WORK and IWORK arrays, and no error message related to */
- /* LWORK or LIWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: DPPTRF or DSPEVD returned an error code: */
- /* <= N: if INFO = i, DSPEVD failed to converge; */
- /* i off-diagonal elements of an intermediate */
- /* tridiagonal form did not converge to zero; */
- /* > N: if INFO = N + i, for 1 <= i <= N, then the leading */
- /* minor of order i of B is not positive definite. */
- /* The factorization of B could not be completed and */
- /* no eigenvalues or eigenvectors were computed. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --ap;
- --bp;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- --iwork;
- /* Function Body */
- wantz = _starpu_lsame_(jobz, "V");
- upper = _starpu_lsame_(uplo, "U");
- lquery = *lwork == -1 || *liwork == -1;
- *info = 0;
- if (*itype < 1 || *itype > 3) {
- *info = -1;
- } else if (! (wantz || _starpu_lsame_(jobz, "N"))) {
- *info = -2;
- } else if (! (upper || _starpu_lsame_(uplo, "L"))) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ldz < 1 || wantz && *ldz < *n) {
- *info = -9;
- }
- if (*info == 0) {
- if (*n <= 1) {
- liwmin = 1;
- lwmin = 1;
- } else {
- if (wantz) {
- liwmin = *n * 5 + 3;
- /* Computing 2nd power */
- i__1 = *n;
- lwmin = *n * 6 + 1 + (i__1 * i__1 << 1);
- } else {
- liwmin = 1;
- lwmin = *n << 1;
- }
- }
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- if (*lwork < lwmin && ! lquery) {
- *info = -11;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -13;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSPGVD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Form a Cholesky factorization of BP. */
- _starpu_dpptrf_(uplo, n, &bp[1], info);
- if (*info != 0) {
- *info = *n + *info;
- return 0;
- }
- /* Transform problem to standard eigenvalue problem and solve. */
- _starpu_dspgst_(itype, uplo, n, &ap[1], &bp[1], info);
- _starpu_dspevd_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1],
- lwork, &iwork[1], liwork, info);
- /* Computing MAX */
- d__1 = (doublereal) lwmin;
- lwmin = (integer) max(d__1,work[1]);
- /* Computing MAX */
- d__1 = (doublereal) liwmin, d__2 = (doublereal) iwork[1];
- liwmin = (integer) max(d__1,d__2);
- if (wantz) {
- /* Backtransform eigenvectors to the original problem. */
- neig = *n;
- if (*info > 0) {
- neig = *info - 1;
- }
- if (*itype == 1 || *itype == 2) {
- /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
- /* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
- if (upper) {
- *(unsigned char *)trans = 'N';
- } else {
- *(unsigned char *)trans = 'T';
- }
- i__1 = neig;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dtpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
- 1], &c__1);
- /* L10: */
- }
- } else if (*itype == 3) {
- /* For B*A*x=(lambda)*x; */
- /* backtransform eigenvectors: x = L*y or U'*y */
- if (upper) {
- *(unsigned char *)trans = 'T';
- } else {
- *(unsigned char *)trans = 'N';
- }
- i__1 = neig;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dtpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
- 1], &c__1);
- /* L20: */
- }
- }
- }
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- return 0;
- /* End of DSPGVD */
- } /* _starpu_dspgvd_ */
|