123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417 |
- /* dsgesv.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b10 = -1.;
- static doublereal c_b11 = 1.;
- static integer c__1 = 1;
- /* Subroutine */ int _starpu__starpu_dsgesv_(integer *n, integer *nrhs, doublereal *a,
- integer *lda, integer *ipiv, doublereal *b, integer *ldb, doublereal *
- x, integer *ldx, doublereal *work, real *swork, integer *iter,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, work_dim1, work_offset,
- x_dim1, x_offset, i__1;
- doublereal d__1;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__;
- doublereal cte, eps, anrm;
- integer ptsa;
- doublereal rnrm, xnrm;
- integer ptsx;
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer iiter;
- extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *), _starpu_dlag2s_(integer *, integer *,
- doublereal *, integer *, real *, integer *, integer *), _starpu_slag2d_(
- integer *, integer *, real *, integer *, doublereal *, integer *,
- integer *);
- extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *), _starpu_dgetrf_(integer *, integer *,
- doublereal *, integer *, integer *, integer *), _starpu_dgetrs_(char *,
- integer *, integer *, doublereal *, integer *, integer *,
- doublereal *, integer *, integer *), _starpu_sgetrf_(integer *,
- integer *, real *, integer *, integer *, integer *), _starpu_sgetrs_(char
- *, integer *, integer *, real *, integer *, integer *, real *,
- integer *, integer *);
- /* -- LAPACK PROTOTYPE driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* February 2007 */
- /* .. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSGESV computes the solution to a real system of linear equations */
- /* A * X = B, */
- /* where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */
- /* DSGESV first attempts to factorize the matrix in SINGLE PRECISION */
- /* and use this factorization within an iterative refinement procedure */
- /* to produce a solution with DOUBLE PRECISION normwise backward error */
- /* quality (see below). If the approach fails the method switches to a */
- /* DOUBLE PRECISION factorization and solve. */
- /* The iterative refinement is not going to be a winning strategy if */
- /* the ratio SINGLE PRECISION performance over DOUBLE PRECISION */
- /* performance is too small. A reasonable strategy should take the */
- /* number of right-hand sides and the size of the matrix into account. */
- /* This might be done with a call to ILAENV in the future. Up to now, we */
- /* always try iterative refinement. */
- /* The iterative refinement process is stopped if */
- /* ITER > ITERMAX */
- /* or for all the RHS we have: */
- /* RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX */
- /* where */
- /* o ITER is the number of the current iteration in the iterative */
- /* refinement process */
- /* o RNRM is the infinity-norm of the residual */
- /* o XNRM is the infinity-norm of the solution */
- /* o ANRM is the infinity-operator-norm of the matrix A */
- /* o EPS is the machine epsilon returned by DLAMCH('Epsilon') */
- /* The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 */
- /* respectively. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The number of linear equations, i.e., the order of the */
- /* matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrix B. NRHS >= 0. */
- /* A (input or input/ouptut) DOUBLE PRECISION array, */
- /* dimension (LDA,N) */
- /* On entry, the N-by-N coefficient matrix A. */
- /* On exit, if iterative refinement has been successfully used */
- /* (INFO.EQ.0 and ITER.GE.0, see description below), then A is */
- /* unchanged, if double precision factorization has been used */
- /* (INFO.EQ.0 and ITER.LT.0, see description below), then the */
- /* array A contains the factors L and U from the factorization */
- /* A = P*L*U; the unit diagonal elements of L are not stored. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* IPIV (output) INTEGER array, dimension (N) */
- /* The pivot indices that define the permutation matrix P; */
- /* row i of the matrix was interchanged with row IPIV(i). */
- /* Corresponds either to the single precision factorization */
- /* (if INFO.EQ.0 and ITER.GE.0) or the double precision */
- /* factorization (if INFO.EQ.0 and ITER.LT.0). */
- /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* The N-by-NRHS right hand side matrix B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
- /* If INFO = 0, the N-by-NRHS solution matrix X. */
- /* LDX (input) INTEGER */
- /* The leading dimension of the array X. LDX >= max(1,N). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (N*NRHS) */
- /* This array is used to hold the residual vectors. */
- /* SWORK (workspace) REAL array, dimension (N*(N+NRHS)) */
- /* This array is used to use the single precision matrix and the */
- /* right-hand sides or solutions in single precision. */
- /* ITER (output) INTEGER */
- /* < 0: iterative refinement has failed, double precision */
- /* factorization has been performed */
- /* -1 : the routine fell back to full precision for */
- /* implementation- or machine-specific reasons */
- /* -2 : narrowing the precision induced an overflow, */
- /* the routine fell back to full precision */
- /* -3 : failure of SGETRF */
- /* -31: stop the iterative refinement after the 30th */
- /* iterations */
- /* > 0: iterative refinement has been sucessfully used. */
- /* Returns the number of iterations */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, U(i,i) computed in DOUBLE PRECISION is */
- /* exactly zero. The factorization has been completed, */
- /* but the factor U is exactly singular, so the solution */
- /* could not be computed. */
- /* ========= */
- /* .. Parameters .. */
- /* .. Local Scalars .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- work_dim1 = *n;
- work_offset = 1 + work_dim1;
- work -= work_offset;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1;
- x -= x_offset;
- --swork;
- /* Function Body */
- *info = 0;
- *iter = 0;
- /* Test the input parameters. */
- if (*n < 0) {
- *info = -1;
- } else if (*nrhs < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- } else if (*ldx < max(1,*n)) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSGESV", &i__1);
- return 0;
- }
- /* Quick return if (N.EQ.0). */
- if (*n == 0) {
- return 0;
- }
- /* Skip single precision iterative refinement if a priori slower */
- /* than double precision factorization. */
- if (FALSE_) {
- *iter = -1;
- goto L40;
- }
- /* Compute some constants. */
- anrm = _starpu_dlange_("I", n, n, &a[a_offset], lda, &work[work_offset]);
- eps = _starpu_dlamch_("Epsilon");
- cte = anrm * eps * sqrt((doublereal) (*n)) * 1.;
- /* Set the indices PTSA, PTSX for referencing SA and SX in SWORK. */
- ptsa = 1;
- ptsx = ptsa + *n * *n;
- /* Convert B from double precision to single precision and store the */
- /* result in SX. */
- _starpu_dlag2s_(n, nrhs, &b[b_offset], ldb, &swork[ptsx], n, info);
- if (*info != 0) {
- *iter = -2;
- goto L40;
- }
- /* Convert A from double precision to single precision and store the */
- /* result in SA. */
- _starpu_dlag2s_(n, n, &a[a_offset], lda, &swork[ptsa], n, info);
- if (*info != 0) {
- *iter = -2;
- goto L40;
- }
- /* Compute the LU factorization of SA. */
- _starpu_sgetrf_(n, n, &swork[ptsa], n, &ipiv[1], info);
- if (*info != 0) {
- *iter = -3;
- goto L40;
- }
- /* Solve the system SA*SX = SB. */
- _starpu_sgetrs_("No transpose", n, nrhs, &swork[ptsa], n, &ipiv[1], &swork[ptsx],
- n, info);
- /* Convert SX back to double precision */
- _starpu_slag2d_(n, nrhs, &swork[ptsx], n, &x[x_offset], ldx, info);
- /* Compute R = B - AX (R is WORK). */
- _starpu_dlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
- _starpu_dgemm_("No Transpose", "No Transpose", n, nrhs, n, &c_b10, &a[a_offset],
- lda, &x[x_offset], ldx, &c_b11, &work[work_offset], n);
- /* Check whether the NRHS normwise backward errors satisfy the */
- /* stopping criterion. If yes, set ITER=0 and return. */
- i__1 = *nrhs;
- for (i__ = 1; i__ <= i__1; ++i__) {
- xnrm = (d__1 = x[_starpu_idamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ *
- x_dim1], abs(d__1));
- rnrm = (d__1 = work[_starpu_idamax_(n, &work[i__ * work_dim1 + 1], &c__1) +
- i__ * work_dim1], abs(d__1));
- if (rnrm > xnrm * cte) {
- goto L10;
- }
- }
- /* If we are here, the NRHS normwise backward errors satisfy the */
- /* stopping criterion. We are good to exit. */
- *iter = 0;
- return 0;
- L10:
- for (iiter = 1; iiter <= 30; ++iiter) {
- /* Convert R (in WORK) from double precision to single precision */
- /* and store the result in SX. */
- _starpu_dlag2s_(n, nrhs, &work[work_offset], n, &swork[ptsx], n, info);
- if (*info != 0) {
- *iter = -2;
- goto L40;
- }
- /* Solve the system SA*SX = SR. */
- _starpu_sgetrs_("No transpose", n, nrhs, &swork[ptsa], n, &ipiv[1], &swork[
- ptsx], n, info);
- /* Convert SX back to double precision and update the current */
- /* iterate. */
- _starpu_slag2d_(n, nrhs, &swork[ptsx], n, &work[work_offset], n, info);
- i__1 = *nrhs;
- for (i__ = 1; i__ <= i__1; ++i__) {
- _starpu_daxpy_(n, &c_b11, &work[i__ * work_dim1 + 1], &c__1, &x[i__ *
- x_dim1 + 1], &c__1);
- }
- /* Compute R = B - AX (R is WORK). */
- _starpu_dlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
- _starpu_dgemm_("No Transpose", "No Transpose", n, nrhs, n, &c_b10, &a[
- a_offset], lda, &x[x_offset], ldx, &c_b11, &work[work_offset],
- n);
- /* Check whether the NRHS normwise backward errors satisfy the */
- /* stopping criterion. If yes, set ITER=IITER>0 and return. */
- i__1 = *nrhs;
- for (i__ = 1; i__ <= i__1; ++i__) {
- xnrm = (d__1 = x[_starpu_idamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ *
- x_dim1], abs(d__1));
- rnrm = (d__1 = work[_starpu_idamax_(n, &work[i__ * work_dim1 + 1], &c__1)
- + i__ * work_dim1], abs(d__1));
- if (rnrm > xnrm * cte) {
- goto L20;
- }
- }
- /* If we are here, the NRHS normwise backward errors satisfy the */
- /* stopping criterion, we are good to exit. */
- *iter = iiter;
- return 0;
- L20:
- /* L30: */
- ;
- }
- /* If we are at this place of the code, this is because we have */
- /* performed ITER=ITERMAX iterations and never satisified the */
- /* stopping criterion, set up the ITER flag accordingly and follow up */
- /* on double precision routine. */
- *iter = -31;
- L40:
- /* Single-precision iterative refinement failed to converge to a */
- /* satisfactory solution, so we resort to double precision. */
- _starpu_dgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
- if (*info != 0) {
- return 0;
- }
- _starpu_dlacpy_("All", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
- _starpu_dgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &x[x_offset]
- , ldx, info);
- return 0;
- /* End of DSGESV. */
- } /* _starpu__starpu_dsgesv_ */
|