123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714 |
- /* dsbtrd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b9 = 0.;
- static doublereal c_b10 = 1.;
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dsbtrd_(char *vect, char *uplo, integer *n, integer *kd,
- doublereal *ab, integer *ldab, doublereal *d__, doublereal *e,
- doublereal *q, integer *ldq, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4,
- i__5;
- /* Local variables */
- integer i__, j, k, l, i2, j1, j2, nq, nr, kd1, ibl, iqb, kdn, jin, nrt,
- kdm1, inca, jend, lend, jinc, incx, last;
- doublereal temp;
- extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- integer j1end, j1inc, iqend;
- extern logical _starpu_lsame_(char *, char *);
- logical initq, wantq, upper;
- extern /* Subroutine */ int _starpu_dlar2v_(integer *, doublereal *, doublereal *,
- doublereal *, integer *, doublereal *, doublereal *, integer *);
- integer iqaend;
- extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *),
- _starpu_dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *), _starpu_xerbla_(char *, integer *), _starpu_dlargv_(
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlartv_(integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSBTRD reduces a real symmetric band matrix A to symmetric */
- /* tridiagonal form T by an orthogonal similarity transformation: */
- /* Q**T * A * Q = T. */
- /* Arguments */
- /* ========= */
- /* VECT (input) CHARACTER*1 */
- /* = 'N': do not form Q; */
- /* = 'V': form Q; */
- /* = 'U': update a matrix X, by forming X*Q. */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* KD (input) INTEGER */
- /* The number of superdiagonals of the matrix A if UPLO = 'U', */
- /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
- /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* On entry, the upper or lower triangle of the symmetric band */
- /* matrix A, stored in the first KD+1 rows of the array. The */
- /* j-th column of A is stored in the j-th column of the array AB */
- /* as follows: */
- /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
- /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
- /* On exit, the diagonal elements of AB are overwritten by the */
- /* diagonal elements of the tridiagonal matrix T; if KD > 0, the */
- /* elements on the first superdiagonal (if UPLO = 'U') or the */
- /* first subdiagonal (if UPLO = 'L') are overwritten by the */
- /* off-diagonal elements of T; the rest of AB is overwritten by */
- /* values generated during the reduction. */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array AB. LDAB >= KD+1. */
- /* D (output) DOUBLE PRECISION array, dimension (N) */
- /* The diagonal elements of the tridiagonal matrix T. */
- /* E (output) DOUBLE PRECISION array, dimension (N-1) */
- /* The off-diagonal elements of the tridiagonal matrix T: */
- /* E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
- /* On entry, if VECT = 'U', then Q must contain an N-by-N */
- /* matrix X; if VECT = 'N' or 'V', then Q need not be set. */
- /* On exit: */
- /* if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; */
- /* if VECT = 'U', Q contains the product X*Q; */
- /* if VECT = 'N', the array Q is not referenced. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. */
- /* LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Further Details */
- /* =============== */
- /* Modified by Linda Kaufman, Bell Labs. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- --d__;
- --e;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --work;
- /* Function Body */
- initq = _starpu_lsame_(vect, "V");
- wantq = initq || _starpu_lsame_(vect, "U");
- upper = _starpu_lsame_(uplo, "U");
- kd1 = *kd + 1;
- kdm1 = *kd - 1;
- incx = *ldab - 1;
- iqend = 1;
- *info = 0;
- if (! wantq && ! _starpu_lsame_(vect, "N")) {
- *info = -1;
- } else if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*kd < 0) {
- *info = -4;
- } else if (*ldab < kd1) {
- *info = -6;
- } else if (*ldq < max(1,*n) && wantq) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSBTRD", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Initialize Q to the unit matrix, if needed */
- if (initq) {
- _starpu_dlaset_("Full", n, n, &c_b9, &c_b10, &q[q_offset], ldq);
- }
- /* Wherever possible, plane rotations are generated and applied in */
- /* vector operations of length NR over the index set J1:J2:KD1. */
- /* The cosines and sines of the plane rotations are stored in the */
- /* arrays D and WORK. */
- inca = kd1 * *ldab;
- /* Computing MIN */
- i__1 = *n - 1;
- kdn = min(i__1,*kd);
- if (upper) {
- if (*kd > 1) {
- /* Reduce to tridiagonal form, working with upper triangle */
- nr = 0;
- j1 = kdn + 2;
- j2 = 1;
- i__1 = *n - 2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Reduce i-th row of matrix to tridiagonal form */
- for (k = kdn + 1; k >= 2; --k) {
- j1 += kdn;
- j2 += kdn;
- if (nr > 0) {
- /* generate plane rotations to annihilate nonzero */
- /* elements which have been created outside the band */
- _starpu_dlargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &
- work[j1], &kd1, &d__[j1], &kd1);
- /* apply rotations from the right */
- /* Dependent on the the number of diagonals either */
- /* DLARTV or DROT is used */
- if (nr >= (*kd << 1) - 1) {
- i__2 = *kd - 1;
- for (l = 1; l <= i__2; ++l) {
- _starpu_dlartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1],
- &inca, &ab[l + j1 * ab_dim1], &inca, &
- d__[j1], &work[j1], &kd1);
- /* L10: */
- }
- } else {
- jend = j1 + (nr - 1) * kd1;
- i__2 = jend;
- i__3 = kd1;
- for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <=
- i__2; jinc += i__3) {
- _starpu_drot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &
- c__1, &ab[jinc * ab_dim1 + 1], &c__1,
- &d__[jinc], &work[jinc]);
- /* L20: */
- }
- }
- }
- if (k > 2) {
- if (k <= *n - i__ + 1) {
- /* generate plane rotation to annihilate a(i,i+k-1) */
- /* within the band */
- _starpu_dlartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1]
- , &ab[*kd - k + 2 + (i__ + k - 1) *
- ab_dim1], &d__[i__ + k - 1], &work[i__ +
- k - 1], &temp);
- ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1] = temp;
- /* apply rotation from the right */
- i__3 = k - 3;
- _starpu_drot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) *
- ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ +
- k - 1) * ab_dim1], &c__1, &d__[i__ + k -
- 1], &work[i__ + k - 1]);
- }
- ++nr;
- j1 = j1 - kdn - 1;
- }
- /* apply plane rotations from both sides to diagonal */
- /* blocks */
- if (nr > 0) {
- _starpu_dlar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 +
- j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca,
- &d__[j1], &work[j1], &kd1);
- }
- /* apply plane rotations from the left */
- if (nr > 0) {
- if ((*kd << 1) - 1 < nr) {
- /* Dependent on the the number of diagonals either */
- /* DLARTV or DROT is used */
- i__3 = *kd - 1;
- for (l = 1; l <= i__3; ++l) {
- if (j2 + l > *n) {
- nrt = nr - 1;
- } else {
- nrt = nr;
- }
- if (nrt > 0) {
- _starpu_dlartv_(&nrt, &ab[*kd - l + (j1 + l) *
- ab_dim1], &inca, &ab[*kd - l + 1
- + (j1 + l) * ab_dim1], &inca, &
- d__[j1], &work[j1], &kd1);
- }
- /* L30: */
- }
- } else {
- j1end = j1 + kd1 * (nr - 2);
- if (j1end >= j1) {
- i__3 = j1end;
- i__2 = kd1;
- for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=
- i__3; jin += i__2) {
- i__4 = *kd - 1;
- _starpu_drot_(&i__4, &ab[*kd - 1 + (jin + 1) *
- ab_dim1], &incx, &ab[*kd + (jin +
- 1) * ab_dim1], &incx, &d__[jin], &
- work[jin]);
- /* L40: */
- }
- }
- /* Computing MIN */
- i__2 = kdm1, i__3 = *n - j2;
- lend = min(i__2,i__3);
- last = j1end + kd1;
- if (lend > 0) {
- _starpu_drot_(&lend, &ab[*kd - 1 + (last + 1) *
- ab_dim1], &incx, &ab[*kd + (last + 1)
- * ab_dim1], &incx, &d__[last], &work[
- last]);
- }
- }
- }
- if (wantq) {
- /* accumulate product of plane rotations in Q */
- if (initq) {
- /* take advantage of the fact that Q was */
- /* initially the Identity matrix */
- iqend = max(iqend,j2);
- /* Computing MAX */
- i__2 = 0, i__3 = k - 3;
- i2 = max(i__2,i__3);
- iqaend = i__ * *kd + 1;
- if (k == 2) {
- iqaend += *kd;
- }
- iqaend = min(iqaend,iqend);
- i__2 = j2;
- i__3 = kd1;
- for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
- += i__3) {
- ibl = i__ - i2 / kdm1;
- ++i2;
- /* Computing MAX */
- i__4 = 1, i__5 = j - ibl;
- iqb = max(i__4,i__5);
- nq = iqaend + 1 - iqb;
- /* Computing MIN */
- i__4 = iqaend + *kd;
- iqaend = min(i__4,iqend);
- _starpu_drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
- &q[iqb + j * q_dim1], &c__1, &d__[j],
- &work[j]);
- /* L50: */
- }
- } else {
- i__3 = j2;
- i__2 = kd1;
- for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
- += i__2) {
- _starpu_drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
- j * q_dim1 + 1], &c__1, &d__[j], &
- work[j]);
- /* L60: */
- }
- }
- }
- if (j2 + kdn > *n) {
- /* adjust J2 to keep within the bounds of the matrix */
- --nr;
- j2 = j2 - kdn - 1;
- }
- i__2 = j2;
- i__3 = kd1;
- for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3)
- {
- /* create nonzero element a(j-1,j+kd) outside the band */
- /* and store it in WORK */
- work[j + *kd] = work[j] * ab[(j + *kd) * ab_dim1 + 1];
- ab[(j + *kd) * ab_dim1 + 1] = d__[j] * ab[(j + *kd) *
- ab_dim1 + 1];
- /* L70: */
- }
- /* L80: */
- }
- /* L90: */
- }
- }
- if (*kd > 0) {
- /* copy off-diagonal elements to E */
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = ab[*kd + (i__ + 1) * ab_dim1];
- /* L100: */
- }
- } else {
- /* set E to zero if original matrix was diagonal */
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = 0.;
- /* L110: */
- }
- }
- /* copy diagonal elements to D */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = ab[kd1 + i__ * ab_dim1];
- /* L120: */
- }
- } else {
- if (*kd > 1) {
- /* Reduce to tridiagonal form, working with lower triangle */
- nr = 0;
- j1 = kdn + 2;
- j2 = 1;
- i__1 = *n - 2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Reduce i-th column of matrix to tridiagonal form */
- for (k = kdn + 1; k >= 2; --k) {
- j1 += kdn;
- j2 += kdn;
- if (nr > 0) {
- /* generate plane rotations to annihilate nonzero */
- /* elements which have been created outside the band */
- _starpu_dlargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &
- work[j1], &kd1, &d__[j1], &kd1);
- /* apply plane rotations from one side */
- /* Dependent on the the number of diagonals either */
- /* DLARTV or DROT is used */
- if (nr > (*kd << 1) - 1) {
- i__3 = *kd - 1;
- for (l = 1; l <= i__3; ++l) {
- _starpu_dlartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) *
- ab_dim1], &inca, &ab[kd1 - l + 1 + (
- j1 - kd1 + l) * ab_dim1], &inca, &d__[
- j1], &work[j1], &kd1);
- /* L130: */
- }
- } else {
- jend = j1 + kd1 * (nr - 1);
- i__3 = jend;
- i__2 = kd1;
- for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <=
- i__3; jinc += i__2) {
- _starpu_drot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1]
- , &incx, &ab[kd1 + (jinc - *kd) *
- ab_dim1], &incx, &d__[jinc], &work[
- jinc]);
- /* L140: */
- }
- }
- }
- if (k > 2) {
- if (k <= *n - i__ + 1) {
- /* generate plane rotation to annihilate a(i+k-1,i) */
- /* within the band */
- _starpu_dlartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ *
- ab_dim1], &d__[i__ + k - 1], &work[i__ +
- k - 1], &temp);
- ab[k - 1 + i__ * ab_dim1] = temp;
- /* apply rotation from the left */
- i__2 = k - 3;
- i__3 = *ldab - 1;
- i__4 = *ldab - 1;
- _starpu_drot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &
- i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &
- i__4, &d__[i__ + k - 1], &work[i__ + k -
- 1]);
- }
- ++nr;
- j1 = j1 - kdn - 1;
- }
- /* apply plane rotations from both sides to diagonal */
- /* blocks */
- if (nr > 0) {
- _starpu_dlar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 *
- ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &
- inca, &d__[j1], &work[j1], &kd1);
- }
- /* apply plane rotations from the right */
- /* Dependent on the the number of diagonals either */
- /* DLARTV or DROT is used */
- if (nr > 0) {
- if (nr > (*kd << 1) - 1) {
- i__2 = *kd - 1;
- for (l = 1; l <= i__2; ++l) {
- if (j2 + l > *n) {
- nrt = nr - 1;
- } else {
- nrt = nr;
- }
- if (nrt > 0) {
- _starpu_dlartv_(&nrt, &ab[l + 2 + (j1 - 1) *
- ab_dim1], &inca, &ab[l + 1 + j1 *
- ab_dim1], &inca, &d__[j1], &work[
- j1], &kd1);
- }
- /* L150: */
- }
- } else {
- j1end = j1 + kd1 * (nr - 2);
- if (j1end >= j1) {
- i__2 = j1end;
- i__3 = kd1;
- for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 :
- j1inc <= i__2; j1inc += i__3) {
- _starpu_drot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 +
- 3], &c__1, &ab[j1inc * ab_dim1 +
- 2], &c__1, &d__[j1inc], &work[
- j1inc]);
- /* L160: */
- }
- }
- /* Computing MIN */
- i__3 = kdm1, i__2 = *n - j2;
- lend = min(i__3,i__2);
- last = j1end + kd1;
- if (lend > 0) {
- _starpu_drot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &
- c__1, &ab[last * ab_dim1 + 2], &c__1,
- &d__[last], &work[last]);
- }
- }
- }
- if (wantq) {
- /* accumulate product of plane rotations in Q */
- if (initq) {
- /* take advantage of the fact that Q was */
- /* initially the Identity matrix */
- iqend = max(iqend,j2);
- /* Computing MAX */
- i__3 = 0, i__2 = k - 3;
- i2 = max(i__3,i__2);
- iqaend = i__ * *kd + 1;
- if (k == 2) {
- iqaend += *kd;
- }
- iqaend = min(iqaend,iqend);
- i__3 = j2;
- i__2 = kd1;
- for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
- += i__2) {
- ibl = i__ - i2 / kdm1;
- ++i2;
- /* Computing MAX */
- i__4 = 1, i__5 = j - ibl;
- iqb = max(i__4,i__5);
- nq = iqaend + 1 - iqb;
- /* Computing MIN */
- i__4 = iqaend + *kd;
- iqaend = min(i__4,iqend);
- _starpu_drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
- &q[iqb + j * q_dim1], &c__1, &d__[j],
- &work[j]);
- /* L170: */
- }
- } else {
- i__2 = j2;
- i__3 = kd1;
- for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
- += i__3) {
- _starpu_drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
- j * q_dim1 + 1], &c__1, &d__[j], &
- work[j]);
- /* L180: */
- }
- }
- }
- if (j2 + kdn > *n) {
- /* adjust J2 to keep within the bounds of the matrix */
- --nr;
- j2 = j2 - kdn - 1;
- }
- i__3 = j2;
- i__2 = kd1;
- for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2)
- {
- /* create nonzero element a(j+kd,j-1) outside the */
- /* band and store it in WORK */
- work[j + *kd] = work[j] * ab[kd1 + j * ab_dim1];
- ab[kd1 + j * ab_dim1] = d__[j] * ab[kd1 + j * ab_dim1]
- ;
- /* L190: */
- }
- /* L200: */
- }
- /* L210: */
- }
- }
- if (*kd > 0) {
- /* copy off-diagonal elements to E */
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = ab[i__ * ab_dim1 + 2];
- /* L220: */
- }
- } else {
- /* set E to zero if original matrix was diagonal */
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = 0.;
- /* L230: */
- }
- }
- /* copy diagonal elements to D */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = ab[i__ * ab_dim1 + 1];
- /* L240: */
- }
- }
- return 0;
- /* End of DSBTRD */
- } /* _starpu_dsbtrd_ */
|