123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328 |
- /* dsbgvd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b12 = 1.;
- static doublereal c_b13 = 0.;
- /* Subroutine */ int _starpu_dsbgvd_(char *jobz, char *uplo, integer *n, integer *ka,
- integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer *
- ldbb, doublereal *w, doublereal *z__, integer *ldz, doublereal *work,
- integer *lwork, integer *iwork, integer *liwork, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
- /* Local variables */
- integer inde;
- char vect[1];
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- extern logical _starpu_lsame_(char *, char *);
- integer iinfo, lwmin;
- logical upper, wantz;
- integer indwk2, llwrk2;
- extern /* Subroutine */ int _starpu_dstedc_(char *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- integer *, integer *, integer *), _starpu_dlacpy_(char *, integer
- *, integer *, doublereal *, integer *, doublereal *, integer *), _starpu_xerbla_(char *, integer *), _starpu_dpbstf_(char *,
- integer *, integer *, doublereal *, integer *, integer *),
- _starpu_dsbtrd_(char *, char *, integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dsbgst_(char *, char *,
- integer *, integer *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *), _starpu_dsterf_(integer *, doublereal *,
- doublereal *, integer *);
- integer indwrk, liwmin;
- logical lquery;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSBGVD computes all the eigenvalues, and optionally, the eigenvectors */
- /* of a real generalized symmetric-definite banded eigenproblem, of the */
- /* form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and */
- /* banded, and B is also positive definite. If eigenvectors are */
- /* desired, it uses a divide and conquer algorithm. */
- /* The divide and conquer algorithm makes very mild assumptions about */
- /* floating point arithmetic. It will work on machines with a guard */
- /* digit in add/subtract, or on those binary machines without guard */
- /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
- /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
- /* without guard digits, but we know of none. */
- /* Arguments */
- /* ========= */
- /* JOBZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only; */
- /* = 'V': Compute eigenvalues and eigenvectors. */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangles of A and B are stored; */
- /* = 'L': Lower triangles of A and B are stored. */
- /* N (input) INTEGER */
- /* The order of the matrices A and B. N >= 0. */
- /* KA (input) INTEGER */
- /* The number of superdiagonals of the matrix A if UPLO = 'U', */
- /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
- /* KB (input) INTEGER */
- /* The number of superdiagonals of the matrix B if UPLO = 'U', */
- /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */
- /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
- /* On entry, the upper or lower triangle of the symmetric band */
- /* matrix A, stored in the first ka+1 rows of the array. The */
- /* j-th column of A is stored in the j-th column of the array AB */
- /* as follows: */
- /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
- /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */
- /* On exit, the contents of AB are destroyed. */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array AB. LDAB >= KA+1. */
- /* BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N) */
- /* On entry, the upper or lower triangle of the symmetric band */
- /* matrix B, stored in the first kb+1 rows of the array. The */
- /* j-th column of B is stored in the j-th column of the array BB */
- /* as follows: */
- /* if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
- /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */
- /* On exit, the factor S from the split Cholesky factorization */
- /* B = S**T*S, as returned by DPBSTF. */
- /* LDBB (input) INTEGER */
- /* The leading dimension of the array BB. LDBB >= KB+1. */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* If INFO = 0, the eigenvalues in ascending order. */
- /* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */
- /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
- /* eigenvectors, with the i-th column of Z holding the */
- /* eigenvector associated with W(i). The eigenvectors are */
- /* normalized so Z**T*B*Z = I. */
- /* If JOBZ = 'N', then Z is not referenced. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1, and if */
- /* JOBZ = 'V', LDZ >= max(1,N). */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. */
- /* If N <= 1, LWORK >= 1. */
- /* If JOBZ = 'N' and N > 1, LWORK >= 3*N. */
- /* If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal sizes of the WORK and IWORK */
- /* arrays, returns these values as the first entries of the WORK */
- /* and IWORK arrays, and no error message related to LWORK or */
- /* LIWORK is issued by XERBLA. */
- /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
- /* On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK. */
- /* LIWORK (input) INTEGER */
- /* The dimension of the array IWORK. */
- /* If JOBZ = 'N' or N <= 1, LIWORK >= 1. */
- /* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */
- /* If LIWORK = -1, then a workspace query is assumed; the */
- /* routine only calculates the optimal sizes of the WORK and */
- /* IWORK arrays, returns these values as the first entries of */
- /* the WORK and IWORK arrays, and no error message related to */
- /* LWORK or LIWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, and i is: */
- /* <= N: the algorithm failed to converge: */
- /* i off-diagonal elements of an intermediate */
- /* tridiagonal form did not converge to zero; */
- /* > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF */
- /* returned INFO = i: B is not positive definite. */
- /* The factorization of B could not be completed and */
- /* no eigenvalues or eigenvectors were computed. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- bb_dim1 = *ldbb;
- bb_offset = 1 + bb_dim1;
- bb -= bb_offset;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- --iwork;
- /* Function Body */
- wantz = _starpu_lsame_(jobz, "V");
- upper = _starpu_lsame_(uplo, "U");
- lquery = *lwork == -1 || *liwork == -1;
- *info = 0;
- if (*n <= 1) {
- liwmin = 1;
- lwmin = 1;
- } else if (wantz) {
- liwmin = *n * 5 + 3;
- /* Computing 2nd power */
- i__1 = *n;
- lwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
- } else {
- liwmin = 1;
- lwmin = *n << 1;
- }
- if (! (wantz || _starpu_lsame_(jobz, "N"))) {
- *info = -1;
- } else if (! (upper || _starpu_lsame_(uplo, "L"))) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ka < 0) {
- *info = -4;
- } else if (*kb < 0 || *kb > *ka) {
- *info = -5;
- } else if (*ldab < *ka + 1) {
- *info = -7;
- } else if (*ldbb < *kb + 1) {
- *info = -9;
- } else if (*ldz < 1 || wantz && *ldz < *n) {
- *info = -12;
- }
- if (*info == 0) {
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- if (*lwork < lwmin && ! lquery) {
- *info = -14;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -16;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSBGVD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Form a split Cholesky factorization of B. */
- _starpu_dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
- if (*info != 0) {
- *info = *n + *info;
- return 0;
- }
- /* Transform problem to standard eigenvalue problem. */
- inde = 1;
- indwrk = inde + *n;
- indwk2 = indwrk + *n * *n;
- llwrk2 = *lwork - indwk2 + 1;
- _starpu_dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb,
- &z__[z_offset], ldz, &work[indwrk], &iinfo)
- ;
- /* Reduce to tridiagonal form. */
- if (wantz) {
- *(unsigned char *)vect = 'U';
- } else {
- *(unsigned char *)vect = 'N';
- }
- _starpu_dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
- z_offset], ldz, &work[indwrk], &iinfo);
- /* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC. */
- if (! wantz) {
- _starpu_dsterf_(n, &w[1], &work[inde], info);
- } else {
- _starpu_dstedc_("I", n, &w[1], &work[inde], &work[indwrk], n, &work[indwk2], &
- llwrk2, &iwork[1], liwork, info);
- _starpu_dgemm_("N", "N", n, n, n, &c_b12, &z__[z_offset], ldz, &work[indwrk],
- n, &c_b13, &work[indwk2], n);
- _starpu_dlacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz);
- }
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- return 0;
- /* End of DSBGVD */
- } /* _starpu_dsbgvd_ */
|