dsbgst.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756
  1. /* dsbgst.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static doublereal c_b8 = 0.;
  15. static doublereal c_b9 = 1.;
  16. static integer c__1 = 1;
  17. static doublereal c_b20 = -1.;
  18. /* Subroutine */ int _starpu_dsbgst_(char *vect, char *uplo, integer *n, integer *ka,
  19. integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer *
  20. ldbb, doublereal *x, integer *ldx, doublereal *work, integer *info)
  21. {
  22. /* System generated locals */
  23. integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
  24. i__2, i__3, i__4;
  25. doublereal d__1;
  26. /* Local variables */
  27. integer i__, j, k, l, m;
  28. doublereal t;
  29. integer i0, i1, i2, j1, j2;
  30. doublereal ra;
  31. integer nr, nx, ka1, kb1;
  32. doublereal ra1;
  33. integer j1t, j2t;
  34. doublereal bii;
  35. integer kbt, nrt, inca;
  36. extern /* Subroutine */ int _starpu_dger_(integer *, integer *, doublereal *,
  37. doublereal *, integer *, doublereal *, integer *, doublereal *,
  38. integer *), _starpu_drot_(integer *, doublereal *, integer *, doublereal *
  39. , integer *, doublereal *, doublereal *), _starpu_dscal_(integer *,
  40. doublereal *, doublereal *, integer *);
  41. extern logical _starpu_lsame_(char *, char *);
  42. logical upper, wantx;
  43. extern /* Subroutine */ int _starpu_dlar2v_(integer *, doublereal *, doublereal *,
  44. doublereal *, integer *, doublereal *, doublereal *, integer *),
  45. _starpu_dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
  46. doublereal *, integer *), _starpu_dlartg_(doublereal *,
  47. doublereal *, doublereal *, doublereal *, doublereal *), _starpu_xerbla_(
  48. char *, integer *), _starpu_dlargv_(integer *, doublereal *,
  49. integer *, doublereal *, integer *, doublereal *, integer *);
  50. logical update;
  51. extern /* Subroutine */ int _starpu_dlartv_(integer *, doublereal *, integer *,
  52. doublereal *, integer *, doublereal *, doublereal *, integer *);
  53. /* -- LAPACK routine (version 3.2) -- */
  54. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  55. /* November 2006 */
  56. /* .. Scalar Arguments .. */
  57. /* .. */
  58. /* .. Array Arguments .. */
  59. /* .. */
  60. /* Purpose */
  61. /* ======= */
  62. /* DSBGST reduces a real symmetric-definite banded generalized */
  63. /* eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
  64. /* such that C has the same bandwidth as A. */
  65. /* B must have been previously factorized as S**T*S by DPBSTF, using a */
  66. /* split Cholesky factorization. A is overwritten by C = X**T*A*X, where */
  67. /* X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the */
  68. /* bandwidth of A. */
  69. /* Arguments */
  70. /* ========= */
  71. /* VECT (input) CHARACTER*1 */
  72. /* = 'N': do not form the transformation matrix X; */
  73. /* = 'V': form X. */
  74. /* UPLO (input) CHARACTER*1 */
  75. /* = 'U': Upper triangle of A is stored; */
  76. /* = 'L': Lower triangle of A is stored. */
  77. /* N (input) INTEGER */
  78. /* The order of the matrices A and B. N >= 0. */
  79. /* KA (input) INTEGER */
  80. /* The number of superdiagonals of the matrix A if UPLO = 'U', */
  81. /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
  82. /* KB (input) INTEGER */
  83. /* The number of superdiagonals of the matrix B if UPLO = 'U', */
  84. /* or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
  85. /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
  86. /* On entry, the upper or lower triangle of the symmetric band */
  87. /* matrix A, stored in the first ka+1 rows of the array. The */
  88. /* j-th column of A is stored in the j-th column of the array AB */
  89. /* as follows: */
  90. /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
  91. /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */
  92. /* On exit, the transformed matrix X**T*A*X, stored in the same */
  93. /* format as A. */
  94. /* LDAB (input) INTEGER */
  95. /* The leading dimension of the array AB. LDAB >= KA+1. */
  96. /* BB (input) DOUBLE PRECISION array, dimension (LDBB,N) */
  97. /* The banded factor S from the split Cholesky factorization of */
  98. /* B, as returned by DPBSTF, stored in the first KB+1 rows of */
  99. /* the array. */
  100. /* LDBB (input) INTEGER */
  101. /* The leading dimension of the array BB. LDBB >= KB+1. */
  102. /* X (output) DOUBLE PRECISION array, dimension (LDX,N) */
  103. /* If VECT = 'V', the n-by-n matrix X. */
  104. /* If VECT = 'N', the array X is not referenced. */
  105. /* LDX (input) INTEGER */
  106. /* The leading dimension of the array X. */
  107. /* LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
  108. /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
  109. /* INFO (output) INTEGER */
  110. /* = 0: successful exit */
  111. /* < 0: if INFO = -i, the i-th argument had an illegal value. */
  112. /* ===================================================================== */
  113. /* .. Parameters .. */
  114. /* .. */
  115. /* .. Local Scalars .. */
  116. /* .. */
  117. /* .. External Functions .. */
  118. /* .. */
  119. /* .. External Subroutines .. */
  120. /* .. */
  121. /* .. Intrinsic Functions .. */
  122. /* .. */
  123. /* .. Executable Statements .. */
  124. /* Test the input parameters */
  125. /* Parameter adjustments */
  126. ab_dim1 = *ldab;
  127. ab_offset = 1 + ab_dim1;
  128. ab -= ab_offset;
  129. bb_dim1 = *ldbb;
  130. bb_offset = 1 + bb_dim1;
  131. bb -= bb_offset;
  132. x_dim1 = *ldx;
  133. x_offset = 1 + x_dim1;
  134. x -= x_offset;
  135. --work;
  136. /* Function Body */
  137. wantx = _starpu_lsame_(vect, "V");
  138. upper = _starpu_lsame_(uplo, "U");
  139. ka1 = *ka + 1;
  140. kb1 = *kb + 1;
  141. *info = 0;
  142. if (! wantx && ! _starpu_lsame_(vect, "N")) {
  143. *info = -1;
  144. } else if (! upper && ! _starpu_lsame_(uplo, "L")) {
  145. *info = -2;
  146. } else if (*n < 0) {
  147. *info = -3;
  148. } else if (*ka < 0) {
  149. *info = -4;
  150. } else if (*kb < 0 || *kb > *ka) {
  151. *info = -5;
  152. } else if (*ldab < *ka + 1) {
  153. *info = -7;
  154. } else if (*ldbb < *kb + 1) {
  155. *info = -9;
  156. } else if (*ldx < 1 || wantx && *ldx < max(1,*n)) {
  157. *info = -11;
  158. }
  159. if (*info != 0) {
  160. i__1 = -(*info);
  161. _starpu_xerbla_("DSBGST", &i__1);
  162. return 0;
  163. }
  164. /* Quick return if possible */
  165. if (*n == 0) {
  166. return 0;
  167. }
  168. inca = *ldab * ka1;
  169. /* Initialize X to the unit matrix, if needed */
  170. if (wantx) {
  171. _starpu_dlaset_("Full", n, n, &c_b8, &c_b9, &x[x_offset], ldx);
  172. }
  173. /* Set M to the splitting point m. It must be the same value as is */
  174. /* used in DPBSTF. The chosen value allows the arrays WORK and RWORK */
  175. /* to be of dimension (N). */
  176. m = (*n + *kb) / 2;
  177. /* The routine works in two phases, corresponding to the two halves */
  178. /* of the split Cholesky factorization of B as S**T*S where */
  179. /* S = ( U ) */
  180. /* ( M L ) */
  181. /* with U upper triangular of order m, and L lower triangular of */
  182. /* order n-m. S has the same bandwidth as B. */
  183. /* S is treated as a product of elementary matrices: */
  184. /* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
  185. /* where S(i) is determined by the i-th row of S. */
  186. /* In phase 1, the index i takes the values n, n-1, ... , m+1; */
  187. /* in phase 2, it takes the values 1, 2, ... , m. */
  188. /* For each value of i, the current matrix A is updated by forming */
  189. /* inv(S(i))**T*A*inv(S(i)). This creates a triangular bulge outside */
  190. /* the band of A. The bulge is then pushed down toward the bottom of */
  191. /* A in phase 1, and up toward the top of A in phase 2, by applying */
  192. /* plane rotations. */
  193. /* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
  194. /* of them are linearly independent, so annihilating a bulge requires */
  195. /* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
  196. /* set of kb-1 rotations, and a 2nd set of kb rotations. */
  197. /* Wherever possible, rotations are generated and applied in vector */
  198. /* operations of length NR between the indices J1 and J2 (sometimes */
  199. /* replaced by modified values NRT, J1T or J2T). */
  200. /* The cosines and sines of the rotations are stored in the array */
  201. /* WORK. The cosines of the 1st set of rotations are stored in */
  202. /* elements n+2:n+m-kb-1 and the sines of the 1st set in elements */
  203. /* 2:m-kb-1; the cosines of the 2nd set are stored in elements */
  204. /* n+m-kb+1:2*n and the sines of the second set in elements m-kb+1:n. */
  205. /* The bulges are not formed explicitly; nonzero elements outside the */
  206. /* band are created only when they are required for generating new */
  207. /* rotations; they are stored in the array WORK, in positions where */
  208. /* they are later overwritten by the sines of the rotations which */
  209. /* annihilate them. */
  210. /* **************************** Phase 1 ***************************** */
  211. /* The logical structure of this phase is: */
  212. /* UPDATE = .TRUE. */
  213. /* DO I = N, M + 1, -1 */
  214. /* use S(i) to update A and create a new bulge */
  215. /* apply rotations to push all bulges KA positions downward */
  216. /* END DO */
  217. /* UPDATE = .FALSE. */
  218. /* DO I = M + KA + 1, N - 1 */
  219. /* apply rotations to push all bulges KA positions downward */
  220. /* END DO */
  221. /* To avoid duplicating code, the two loops are merged. */
  222. update = TRUE_;
  223. i__ = *n + 1;
  224. L10:
  225. if (update) {
  226. --i__;
  227. /* Computing MIN */
  228. i__1 = *kb, i__2 = i__ - 1;
  229. kbt = min(i__1,i__2);
  230. i0 = i__ - 1;
  231. /* Computing MIN */
  232. i__1 = *n, i__2 = i__ + *ka;
  233. i1 = min(i__1,i__2);
  234. i2 = i__ - kbt + ka1;
  235. if (i__ < m + 1) {
  236. update = FALSE_;
  237. ++i__;
  238. i0 = m;
  239. if (*ka == 0) {
  240. goto L480;
  241. }
  242. goto L10;
  243. }
  244. } else {
  245. i__ += *ka;
  246. if (i__ > *n - 1) {
  247. goto L480;
  248. }
  249. }
  250. if (upper) {
  251. /* Transform A, working with the upper triangle */
  252. if (update) {
  253. /* Form inv(S(i))**T * A * inv(S(i)) */
  254. bii = bb[kb1 + i__ * bb_dim1];
  255. i__1 = i1;
  256. for (j = i__; j <= i__1; ++j) {
  257. ab[i__ - j + ka1 + j * ab_dim1] /= bii;
  258. /* L20: */
  259. }
  260. /* Computing MAX */
  261. i__1 = 1, i__2 = i__ - *ka;
  262. i__3 = i__;
  263. for (j = max(i__1,i__2); j <= i__3; ++j) {
  264. ab[j - i__ + ka1 + i__ * ab_dim1] /= bii;
  265. /* L30: */
  266. }
  267. i__3 = i__ - 1;
  268. for (k = i__ - kbt; k <= i__3; ++k) {
  269. i__1 = k;
  270. for (j = i__ - kbt; j <= i__1; ++j) {
  271. ab[j - k + ka1 + k * ab_dim1] = ab[j - k + ka1 + k *
  272. ab_dim1] - bb[j - i__ + kb1 + i__ * bb_dim1] * ab[
  273. k - i__ + ka1 + i__ * ab_dim1] - bb[k - i__ + kb1
  274. + i__ * bb_dim1] * ab[j - i__ + ka1 + i__ *
  275. ab_dim1] + ab[ka1 + i__ * ab_dim1] * bb[j - i__ +
  276. kb1 + i__ * bb_dim1] * bb[k - i__ + kb1 + i__ *
  277. bb_dim1];
  278. /* L40: */
  279. }
  280. /* Computing MAX */
  281. i__1 = 1, i__2 = i__ - *ka;
  282. i__4 = i__ - kbt - 1;
  283. for (j = max(i__1,i__2); j <= i__4; ++j) {
  284. ab[j - k + ka1 + k * ab_dim1] -= bb[k - i__ + kb1 + i__ *
  285. bb_dim1] * ab[j - i__ + ka1 + i__ * ab_dim1];
  286. /* L50: */
  287. }
  288. /* L60: */
  289. }
  290. i__3 = i1;
  291. for (j = i__; j <= i__3; ++j) {
  292. /* Computing MAX */
  293. i__4 = j - *ka, i__1 = i__ - kbt;
  294. i__2 = i__ - 1;
  295. for (k = max(i__4,i__1); k <= i__2; ++k) {
  296. ab[k - j + ka1 + j * ab_dim1] -= bb[k - i__ + kb1 + i__ *
  297. bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1];
  298. /* L70: */
  299. }
  300. /* L80: */
  301. }
  302. if (wantx) {
  303. /* post-multiply X by inv(S(i)) */
  304. i__3 = *n - m;
  305. d__1 = 1. / bii;
  306. _starpu_dscal_(&i__3, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
  307. if (kbt > 0) {
  308. i__3 = *n - m;
  309. _starpu_dger_(&i__3, &kbt, &c_b20, &x[m + 1 + i__ * x_dim1], &
  310. c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
  311. + 1 + (i__ - kbt) * x_dim1], ldx);
  312. }
  313. }
  314. /* store a(i,i1) in RA1 for use in next loop over K */
  315. ra1 = ab[i__ - i1 + ka1 + i1 * ab_dim1];
  316. }
  317. /* Generate and apply vectors of rotations to chase all the */
  318. /* existing bulges KA positions down toward the bottom of the */
  319. /* band */
  320. i__3 = *kb - 1;
  321. for (k = 1; k <= i__3; ++k) {
  322. if (update) {
  323. /* Determine the rotations which would annihilate the bulge */
  324. /* which has in theory just been created */
  325. if (i__ - k + *ka < *n && i__ - k > 1) {
  326. /* generate rotation to annihilate a(i,i-k+ka+1) */
  327. _starpu_dlartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
  328. work[*n + i__ - k + *ka - m], &work[i__ - k + *ka
  329. - m], &ra);
  330. /* create nonzero element a(i-k,i-k+ka+1) outside the */
  331. /* band and store it in WORK(i-k) */
  332. t = -bb[kb1 - k + i__ * bb_dim1] * ra1;
  333. work[i__ - k] = work[*n + i__ - k + *ka - m] * t - work[
  334. i__ - k + *ka - m] * ab[(i__ - k + *ka) * ab_dim1
  335. + 1];
  336. ab[(i__ - k + *ka) * ab_dim1 + 1] = work[i__ - k + *ka -
  337. m] * t + work[*n + i__ - k + *ka - m] * ab[(i__ -
  338. k + *ka) * ab_dim1 + 1];
  339. ra1 = ra;
  340. }
  341. }
  342. /* Computing MAX */
  343. i__2 = 1, i__4 = k - i0 + 2;
  344. j2 = i__ - k - 1 + max(i__2,i__4) * ka1;
  345. nr = (*n - j2 + *ka) / ka1;
  346. j1 = j2 + (nr - 1) * ka1;
  347. if (update) {
  348. /* Computing MAX */
  349. i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
  350. j2t = max(i__2,i__4);
  351. } else {
  352. j2t = j2;
  353. }
  354. nrt = (*n - j2t + *ka) / ka1;
  355. i__2 = j1;
  356. i__4 = ka1;
  357. for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
  358. /* create nonzero element a(j-ka,j+1) outside the band */
  359. /* and store it in WORK(j-m) */
  360. work[j - m] *= ab[(j + 1) * ab_dim1 + 1];
  361. ab[(j + 1) * ab_dim1 + 1] = work[*n + j - m] * ab[(j + 1) *
  362. ab_dim1 + 1];
  363. /* L90: */
  364. }
  365. /* generate rotations in 1st set to annihilate elements which */
  366. /* have been created outside the band */
  367. if (nrt > 0) {
  368. _starpu_dlargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
  369. ka1, &work[*n + j2t - m], &ka1);
  370. }
  371. if (nr > 0) {
  372. /* apply rotations in 1st set from the right */
  373. i__4 = *ka - 1;
  374. for (l = 1; l <= i__4; ++l) {
  375. _starpu_dlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  376. - l + (j2 + 1) * ab_dim1], &inca, &work[*n + j2 -
  377. m], &work[j2 - m], &ka1);
  378. /* L100: */
  379. }
  380. /* apply rotations in 1st set from both sides to diagonal */
  381. /* blocks */
  382. _starpu_dlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  383. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &work[
  384. *n + j2 - m], &work[j2 - m], &ka1);
  385. }
  386. /* start applying rotations in 1st set from the left */
  387. i__4 = *kb - k + 1;
  388. for (l = *ka - 1; l >= i__4; --l) {
  389. nrt = (*n - j2 + l) / ka1;
  390. if (nrt > 0) {
  391. _starpu_dlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  392. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  393. work[*n + j2 - m], &work[j2 - m], &ka1);
  394. }
  395. /* L110: */
  396. }
  397. if (wantx) {
  398. /* post-multiply X by product of rotations in 1st set */
  399. i__4 = j1;
  400. i__2 = ka1;
  401. for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
  402. i__1 = *n - m;
  403. _starpu_drot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  404. + 1) * x_dim1], &c__1, &work[*n + j - m], &work[j
  405. - m]);
  406. /* L120: */
  407. }
  408. }
  409. /* L130: */
  410. }
  411. if (update) {
  412. if (i2 <= *n && kbt > 0) {
  413. /* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
  414. /* band and store it in WORK(i-kbt) */
  415. work[i__ - kbt] = -bb[kb1 - kbt + i__ * bb_dim1] * ra1;
  416. }
  417. }
  418. for (k = *kb; k >= 1; --k) {
  419. if (update) {
  420. /* Computing MAX */
  421. i__3 = 2, i__2 = k - i0 + 1;
  422. j2 = i__ - k - 1 + max(i__3,i__2) * ka1;
  423. } else {
  424. /* Computing MAX */
  425. i__3 = 1, i__2 = k - i0 + 1;
  426. j2 = i__ - k - 1 + max(i__3,i__2) * ka1;
  427. }
  428. /* finish applying rotations in 2nd set from the left */
  429. for (l = *kb - k; l >= 1; --l) {
  430. nrt = (*n - j2 + *ka + l) / ka1;
  431. if (nrt > 0) {
  432. _starpu_dlartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
  433. l + 1 + (j2 - l + 1) * ab_dim1], &inca, &work[*n
  434. + j2 - *ka], &work[j2 - *ka], &ka1);
  435. }
  436. /* L140: */
  437. }
  438. nr = (*n - j2 + *ka) / ka1;
  439. j1 = j2 + (nr - 1) * ka1;
  440. i__3 = j2;
  441. i__2 = -ka1;
  442. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  443. work[j] = work[j - *ka];
  444. work[*n + j] = work[*n + j - *ka];
  445. /* L150: */
  446. }
  447. i__2 = j1;
  448. i__3 = ka1;
  449. for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
  450. /* create nonzero element a(j-ka,j+1) outside the band */
  451. /* and store it in WORK(j) */
  452. work[j] *= ab[(j + 1) * ab_dim1 + 1];
  453. ab[(j + 1) * ab_dim1 + 1] = work[*n + j] * ab[(j + 1) *
  454. ab_dim1 + 1];
  455. /* L160: */
  456. }
  457. if (update) {
  458. if (i__ - k < *n - *ka && k <= kbt) {
  459. work[i__ - k + *ka] = work[i__ - k];
  460. }
  461. }
  462. /* L170: */
  463. }
  464. for (k = *kb; k >= 1; --k) {
  465. /* Computing MAX */
  466. i__3 = 1, i__2 = k - i0 + 1;
  467. j2 = i__ - k - 1 + max(i__3,i__2) * ka1;
  468. nr = (*n - j2 + *ka) / ka1;
  469. j1 = j2 + (nr - 1) * ka1;
  470. if (nr > 0) {
  471. /* generate rotations in 2nd set to annihilate elements */
  472. /* which have been created outside the band */
  473. _starpu_dlargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
  474. work[*n + j2], &ka1);
  475. /* apply rotations in 2nd set from the right */
  476. i__3 = *ka - 1;
  477. for (l = 1; l <= i__3; ++l) {
  478. _starpu_dlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  479. - l + (j2 + 1) * ab_dim1], &inca, &work[*n + j2],
  480. &work[j2], &ka1);
  481. /* L180: */
  482. }
  483. /* apply rotations in 2nd set from both sides to diagonal */
  484. /* blocks */
  485. _starpu_dlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  486. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &work[
  487. *n + j2], &work[j2], &ka1);
  488. }
  489. /* start applying rotations in 2nd set from the left */
  490. i__3 = *kb - k + 1;
  491. for (l = *ka - 1; l >= i__3; --l) {
  492. nrt = (*n - j2 + l) / ka1;
  493. if (nrt > 0) {
  494. _starpu_dlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  495. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  496. work[*n + j2], &work[j2], &ka1);
  497. }
  498. /* L190: */
  499. }
  500. if (wantx) {
  501. /* post-multiply X by product of rotations in 2nd set */
  502. i__3 = j1;
  503. i__2 = ka1;
  504. for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  505. i__4 = *n - m;
  506. _starpu_drot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  507. + 1) * x_dim1], &c__1, &work[*n + j], &work[j]);
  508. /* L200: */
  509. }
  510. }
  511. /* L210: */
  512. }
  513. i__2 = *kb - 1;
  514. for (k = 1; k <= i__2; ++k) {
  515. /* Computing MAX */
  516. i__3 = 1, i__4 = k - i0 + 2;
  517. j2 = i__ - k - 1 + max(i__3,i__4) * ka1;
  518. /* finish applying rotations in 1st set from the left */
  519. for (l = *kb - k; l >= 1; --l) {
  520. nrt = (*n - j2 + l) / ka1;
  521. if (nrt > 0) {
  522. _starpu_dlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  523. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  524. work[*n + j2 - m], &work[j2 - m], &ka1);
  525. }
  526. /* L220: */
  527. }
  528. /* L230: */
  529. }
  530. if (*kb > 1) {
  531. i__2 = i__ - *kb + (*ka << 1) + 1;
  532. for (j = *n - 1; j >= i__2; --j) {
  533. work[*n + j - m] = work[*n + j - *ka - m];
  534. work[j - m] = work[j - *ka - m];
  535. /* L240: */
  536. }
  537. }
  538. } else {
  539. /* Transform A, working with the lower triangle */
  540. if (update) {
  541. /* Form inv(S(i))**T * A * inv(S(i)) */
  542. bii = bb[i__ * bb_dim1 + 1];
  543. i__2 = i1;
  544. for (j = i__; j <= i__2; ++j) {
  545. ab[j - i__ + 1 + i__ * ab_dim1] /= bii;
  546. /* L250: */
  547. }
  548. /* Computing MAX */
  549. i__2 = 1, i__3 = i__ - *ka;
  550. i__4 = i__;
  551. for (j = max(i__2,i__3); j <= i__4; ++j) {
  552. ab[i__ - j + 1 + j * ab_dim1] /= bii;
  553. /* L260: */
  554. }
  555. i__4 = i__ - 1;
  556. for (k = i__ - kbt; k <= i__4; ++k) {
  557. i__2 = k;
  558. for (j = i__ - kbt; j <= i__2; ++j) {
  559. ab[k - j + 1 + j * ab_dim1] = ab[k - j + 1 + j * ab_dim1]
  560. - bb[i__ - j + 1 + j * bb_dim1] * ab[i__ - k + 1
  561. + k * ab_dim1] - bb[i__ - k + 1 + k * bb_dim1] *
  562. ab[i__ - j + 1 + j * ab_dim1] + ab[i__ * ab_dim1
  563. + 1] * bb[i__ - j + 1 + j * bb_dim1] * bb[i__ - k
  564. + 1 + k * bb_dim1];
  565. /* L270: */
  566. }
  567. /* Computing MAX */
  568. i__2 = 1, i__3 = i__ - *ka;
  569. i__1 = i__ - kbt - 1;
  570. for (j = max(i__2,i__3); j <= i__1; ++j) {
  571. ab[k - j + 1 + j * ab_dim1] -= bb[i__ - k + 1 + k *
  572. bb_dim1] * ab[i__ - j + 1 + j * ab_dim1];
  573. /* L280: */
  574. }
  575. /* L290: */
  576. }
  577. i__4 = i1;
  578. for (j = i__; j <= i__4; ++j) {
  579. /* Computing MAX */
  580. i__1 = j - *ka, i__2 = i__ - kbt;
  581. i__3 = i__ - 1;
  582. for (k = max(i__1,i__2); k <= i__3; ++k) {
  583. ab[j - k + 1 + k * ab_dim1] -= bb[i__ - k + 1 + k *
  584. bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1];
  585. /* L300: */
  586. }
  587. /* L310: */
  588. }
  589. if (wantx) {
  590. /* post-multiply X by inv(S(i)) */
  591. i__4 = *n - m;
  592. d__1 = 1. / bii;
  593. _starpu_dscal_(&i__4, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
  594. if (kbt > 0) {
  595. i__4 = *n - m;
  596. i__3 = *ldbb - 1;
  597. _starpu_dger_(&i__4, &kbt, &c_b20, &x[m + 1 + i__ * x_dim1], &
  598. c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
  599. &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
  600. }
  601. }
  602. /* store a(i1,i) in RA1 for use in next loop over K */
  603. ra1 = ab[i1 - i__ + 1 + i__ * ab_dim1];
  604. }
  605. /* Generate and apply vectors of rotations to chase all the */
  606. /* existing bulges KA positions down toward the bottom of the */
  607. /* band */
  608. i__4 = *kb - 1;
  609. for (k = 1; k <= i__4; ++k) {
  610. if (update) {
  611. /* Determine the rotations which would annihilate the bulge */
  612. /* which has in theory just been created */
  613. if (i__ - k + *ka < *n && i__ - k > 1) {
  614. /* generate rotation to annihilate a(i-k+ka+1,i) */
  615. _starpu_dlartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &work[*n +
  616. i__ - k + *ka - m], &work[i__ - k + *ka - m], &ra)
  617. ;
  618. /* create nonzero element a(i-k+ka+1,i-k) outside the */
  619. /* band and store it in WORK(i-k) */
  620. t = -bb[k + 1 + (i__ - k) * bb_dim1] * ra1;
  621. work[i__ - k] = work[*n + i__ - k + *ka - m] * t - work[
  622. i__ - k + *ka - m] * ab[ka1 + (i__ - k) * ab_dim1]
  623. ;
  624. ab[ka1 + (i__ - k) * ab_dim1] = work[i__ - k + *ka - m] *
  625. t + work[*n + i__ - k + *ka - m] * ab[ka1 + (i__
  626. - k) * ab_dim1];
  627. ra1 = ra;
  628. }
  629. }
  630. /* Computing MAX */
  631. i__3 = 1, i__1 = k - i0 + 2;
  632. j2 = i__ - k - 1 + max(i__3,i__1) * ka1;
  633. nr = (*n - j2 + *ka) / ka1;
  634. j1 = j2 + (nr - 1) * ka1;
  635. if (update) {
  636. /* Computing MAX */
  637. i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
  638. j2t = max(i__3,i__1);
  639. } else {
  640. j2t = j2;
  641. }
  642. nrt = (*n - j2t + *ka) / ka1;
  643. i__3 = j1;
  644. i__1 = ka1;
  645. for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  646. /* create nonzero element a(j+1,j-ka) outside the band */
  647. /* and store it in WORK(j-m) */
  648. work[j - m] *= ab[ka1 + (j - *ka + 1) * ab_dim1];
  649. ab[ka1 + (j - *ka + 1) * ab_dim1] = work[*n + j - m] * ab[ka1
  650. + (j - *ka + 1) * ab_dim1];
  651. /* L320: */
  652. }
  653. /* generate rotations in 1st set to annihilate elements which */
  654. /* have been created outside the band */
  655. if (nrt > 0) {
  656. _starpu_dlargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
  657. j2t - m], &ka1, &work[*n + j2t - m], &ka1);
  658. }
  659. if (nr > 0) {
  660. /* apply rotations in 1st set from the left */
  661. i__1 = *ka - 1;
  662. for (l = 1; l <= i__1; ++l) {
  663. _starpu_dlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  664. l + 2 + (j2 - l) * ab_dim1], &inca, &work[*n + j2
  665. - m], &work[j2 - m], &ka1);
  666. /* L330: */
  667. }
  668. /* apply rotations in 1st set from both sides to diagonal */
  669. /* blocks */
  670. _starpu_dlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  671. 1], &ab[j2 * ab_dim1 + 2], &inca, &work[*n + j2 - m],
  672. &work[j2 - m], &ka1);
  673. }
  674. /* start applying rotations in 1st set from the right */
  675. i__1 = *kb - k + 1;
  676. for (l = *ka - 1; l >= i__1; --l) {
  677. nrt = (*n - j2 + l) / ka1;
  678. if (nrt > 0) {
  679. _starpu_dlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  680. ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
  681. j2 - m], &work[j2 - m], &ka1);
  682. }
  683. /* L340: */
  684. }
  685. if (wantx) {
  686. /* post-multiply X by product of rotations in 1st set */
  687. i__1 = j1;
  688. i__3 = ka1;
  689. for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  690. i__2 = *n - m;
  691. _starpu_drot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  692. + 1) * x_dim1], &c__1, &work[*n + j - m], &work[j
  693. - m]);
  694. /* L350: */
  695. }
  696. }
  697. /* L360: */
  698. }
  699. if (update) {
  700. if (i2 <= *n && kbt > 0) {
  701. /* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
  702. /* band and store it in WORK(i-kbt) */
  703. work[i__ - kbt] = -bb[kbt + 1 + (i__ - kbt) * bb_dim1] * ra1;
  704. }
  705. }
  706. for (k = *kb; k >= 1; --k) {
  707. if (update) {
  708. /* Computing MAX */
  709. i__4 = 2, i__3 = k - i0 + 1;
  710. j2 = i__ - k - 1 + max(i__4,i__3) * ka1;
  711. } else {
  712. /* Computing MAX */
  713. i__4 = 1, i__3 = k - i0 + 1;
  714. j2 = i__ - k - 1 + max(i__4,i__3) * ka1;
  715. }
  716. /* finish applying rotations in 2nd set from the right */
  717. for (l = *kb - k; l >= 1; --l) {
  718. nrt = (*n - j2 + *ka + l) / ka1;
  719. if (nrt > 0) {
  720. _starpu_dlartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
  721. inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
  722. inca, &work[*n + j2 - *ka], &work[j2 - *ka], &ka1)
  723. ;
  724. }
  725. /* L370: */
  726. }
  727. nr = (*n - j2 + *ka) / ka1;
  728. j1 = j2 + (nr - 1) * ka1;
  729. i__4 = j2;
  730. i__3 = -ka1;
  731. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  732. work[j] = work[j - *ka];
  733. work[*n + j] = work[*n + j - *ka];
  734. /* L380: */
  735. }
  736. i__3 = j1;
  737. i__4 = ka1;
  738. for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  739. /* create nonzero element a(j+1,j-ka) outside the band */
  740. /* and store it in WORK(j) */
  741. work[j] *= ab[ka1 + (j - *ka + 1) * ab_dim1];
  742. ab[ka1 + (j - *ka + 1) * ab_dim1] = work[*n + j] * ab[ka1 + (
  743. j - *ka + 1) * ab_dim1];
  744. /* L390: */
  745. }
  746. if (update) {
  747. if (i__ - k < *n - *ka && k <= kbt) {
  748. work[i__ - k + *ka] = work[i__ - k];
  749. }
  750. }
  751. /* L400: */
  752. }
  753. for (k = *kb; k >= 1; --k) {
  754. /* Computing MAX */
  755. i__4 = 1, i__3 = k - i0 + 1;
  756. j2 = i__ - k - 1 + max(i__4,i__3) * ka1;
  757. nr = (*n - j2 + *ka) / ka1;
  758. j1 = j2 + (nr - 1) * ka1;
  759. if (nr > 0) {
  760. /* generate rotations in 2nd set to annihilate elements */
  761. /* which have been created outside the band */
  762. _starpu_dlargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
  763. , &ka1, &work[*n + j2], &ka1);
  764. /* apply rotations in 2nd set from the left */
  765. i__4 = *ka - 1;
  766. for (l = 1; l <= i__4; ++l) {
  767. _starpu_dlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  768. l + 2 + (j2 - l) * ab_dim1], &inca, &work[*n + j2]
  769. , &work[j2], &ka1);
  770. /* L410: */
  771. }
  772. /* apply rotations in 2nd set from both sides to diagonal */
  773. /* blocks */
  774. _starpu_dlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  775. 1], &ab[j2 * ab_dim1 + 2], &inca, &work[*n + j2], &
  776. work[j2], &ka1);
  777. }
  778. /* start applying rotations in 2nd set from the right */
  779. i__4 = *kb - k + 1;
  780. for (l = *ka - 1; l >= i__4; --l) {
  781. nrt = (*n - j2 + l) / ka1;
  782. if (nrt > 0) {
  783. _starpu_dlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  784. ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
  785. j2], &work[j2], &ka1);
  786. }
  787. /* L420: */
  788. }
  789. if (wantx) {
  790. /* post-multiply X by product of rotations in 2nd set */
  791. i__4 = j1;
  792. i__3 = ka1;
  793. for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  794. i__1 = *n - m;
  795. _starpu_drot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  796. + 1) * x_dim1], &c__1, &work[*n + j], &work[j]);
  797. /* L430: */
  798. }
  799. }
  800. /* L440: */
  801. }
  802. i__3 = *kb - 1;
  803. for (k = 1; k <= i__3; ++k) {
  804. /* Computing MAX */
  805. i__4 = 1, i__1 = k - i0 + 2;
  806. j2 = i__ - k - 1 + max(i__4,i__1) * ka1;
  807. /* finish applying rotations in 1st set from the right */
  808. for (l = *kb - k; l >= 1; --l) {
  809. nrt = (*n - j2 + l) / ka1;
  810. if (nrt > 0) {
  811. _starpu_dlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  812. ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
  813. j2 - m], &work[j2 - m], &ka1);
  814. }
  815. /* L450: */
  816. }
  817. /* L460: */
  818. }
  819. if (*kb > 1) {
  820. i__3 = i__ - *kb + (*ka << 1) + 1;
  821. for (j = *n - 1; j >= i__3; --j) {
  822. work[*n + j - m] = work[*n + j - *ka - m];
  823. work[j - m] = work[j - *ka - m];
  824. /* L470: */
  825. }
  826. }
  827. }
  828. goto L10;
  829. L480:
  830. /* **************************** Phase 2 ***************************** */
  831. /* The logical structure of this phase is: */
  832. /* UPDATE = .TRUE. */
  833. /* DO I = 1, M */
  834. /* use S(i) to update A and create a new bulge */
  835. /* apply rotations to push all bulges KA positions upward */
  836. /* END DO */
  837. /* UPDATE = .FALSE. */
  838. /* DO I = M - KA - 1, 2, -1 */
  839. /* apply rotations to push all bulges KA positions upward */
  840. /* END DO */
  841. /* To avoid duplicating code, the two loops are merged. */
  842. update = TRUE_;
  843. i__ = 0;
  844. L490:
  845. if (update) {
  846. ++i__;
  847. /* Computing MIN */
  848. i__3 = *kb, i__4 = m - i__;
  849. kbt = min(i__3,i__4);
  850. i0 = i__ + 1;
  851. /* Computing MAX */
  852. i__3 = 1, i__4 = i__ - *ka;
  853. i1 = max(i__3,i__4);
  854. i2 = i__ + kbt - ka1;
  855. if (i__ > m) {
  856. update = FALSE_;
  857. --i__;
  858. i0 = m + 1;
  859. if (*ka == 0) {
  860. return 0;
  861. }
  862. goto L490;
  863. }
  864. } else {
  865. i__ -= *ka;
  866. if (i__ < 2) {
  867. return 0;
  868. }
  869. }
  870. if (i__ < m - kbt) {
  871. nx = m;
  872. } else {
  873. nx = *n;
  874. }
  875. if (upper) {
  876. /* Transform A, working with the upper triangle */
  877. if (update) {
  878. /* Form inv(S(i))**T * A * inv(S(i)) */
  879. bii = bb[kb1 + i__ * bb_dim1];
  880. i__3 = i__;
  881. for (j = i1; j <= i__3; ++j) {
  882. ab[j - i__ + ka1 + i__ * ab_dim1] /= bii;
  883. /* L500: */
  884. }
  885. /* Computing MIN */
  886. i__4 = *n, i__1 = i__ + *ka;
  887. i__3 = min(i__4,i__1);
  888. for (j = i__; j <= i__3; ++j) {
  889. ab[i__ - j + ka1 + j * ab_dim1] /= bii;
  890. /* L510: */
  891. }
  892. i__3 = i__ + kbt;
  893. for (k = i__ + 1; k <= i__3; ++k) {
  894. i__4 = i__ + kbt;
  895. for (j = k; j <= i__4; ++j) {
  896. ab[k - j + ka1 + j * ab_dim1] = ab[k - j + ka1 + j *
  897. ab_dim1] - bb[i__ - j + kb1 + j * bb_dim1] * ab[
  898. i__ - k + ka1 + k * ab_dim1] - bb[i__ - k + kb1 +
  899. k * bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1] +
  900. ab[ka1 + i__ * ab_dim1] * bb[i__ - j + kb1 + j *
  901. bb_dim1] * bb[i__ - k + kb1 + k * bb_dim1];
  902. /* L520: */
  903. }
  904. /* Computing MIN */
  905. i__1 = *n, i__2 = i__ + *ka;
  906. i__4 = min(i__1,i__2);
  907. for (j = i__ + kbt + 1; j <= i__4; ++j) {
  908. ab[k - j + ka1 + j * ab_dim1] -= bb[i__ - k + kb1 + k *
  909. bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1];
  910. /* L530: */
  911. }
  912. /* L540: */
  913. }
  914. i__3 = i__;
  915. for (j = i1; j <= i__3; ++j) {
  916. /* Computing MIN */
  917. i__1 = j + *ka, i__2 = i__ + kbt;
  918. i__4 = min(i__1,i__2);
  919. for (k = i__ + 1; k <= i__4; ++k) {
  920. ab[j - k + ka1 + k * ab_dim1] -= bb[i__ - k + kb1 + k *
  921. bb_dim1] * ab[j - i__ + ka1 + i__ * ab_dim1];
  922. /* L550: */
  923. }
  924. /* L560: */
  925. }
  926. if (wantx) {
  927. /* post-multiply X by inv(S(i)) */
  928. d__1 = 1. / bii;
  929. _starpu_dscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
  930. if (kbt > 0) {
  931. i__3 = *ldbb - 1;
  932. _starpu_dger_(&nx, &kbt, &c_b20, &x[i__ * x_dim1 + 1], &c__1, &bb[
  933. *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
  934. x_dim1 + 1], ldx);
  935. }
  936. }
  937. /* store a(i1,i) in RA1 for use in next loop over K */
  938. ra1 = ab[i1 - i__ + ka1 + i__ * ab_dim1];
  939. }
  940. /* Generate and apply vectors of rotations to chase all the */
  941. /* existing bulges KA positions up toward the top of the band */
  942. i__3 = *kb - 1;
  943. for (k = 1; k <= i__3; ++k) {
  944. if (update) {
  945. /* Determine the rotations which would annihilate the bulge */
  946. /* which has in theory just been created */
  947. if (i__ + k - ka1 > 0 && i__ + k < m) {
  948. /* generate rotation to annihilate a(i+k-ka-1,i) */
  949. _starpu_dlartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &work[*n + i__
  950. + k - *ka], &work[i__ + k - *ka], &ra);
  951. /* create nonzero element a(i+k-ka-1,i+k) outside the */
  952. /* band and store it in WORK(m-kb+i+k) */
  953. t = -bb[kb1 - k + (i__ + k) * bb_dim1] * ra1;
  954. work[m - *kb + i__ + k] = work[*n + i__ + k - *ka] * t -
  955. work[i__ + k - *ka] * ab[(i__ + k) * ab_dim1 + 1];
  956. ab[(i__ + k) * ab_dim1 + 1] = work[i__ + k - *ka] * t +
  957. work[*n + i__ + k - *ka] * ab[(i__ + k) * ab_dim1
  958. + 1];
  959. ra1 = ra;
  960. }
  961. }
  962. /* Computing MAX */
  963. i__4 = 1, i__1 = k + i0 - m + 1;
  964. j2 = i__ + k + 1 - max(i__4,i__1) * ka1;
  965. nr = (j2 + *ka - 1) / ka1;
  966. j1 = j2 - (nr - 1) * ka1;
  967. if (update) {
  968. /* Computing MIN */
  969. i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  970. j2t = min(i__4,i__1);
  971. } else {
  972. j2t = j2;
  973. }
  974. nrt = (j2t + *ka - 1) / ka1;
  975. i__4 = j2t;
  976. i__1 = ka1;
  977. for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
  978. /* create nonzero element a(j-1,j+ka) outside the band */
  979. /* and store it in WORK(j) */
  980. work[j] *= ab[(j + *ka - 1) * ab_dim1 + 1];
  981. ab[(j + *ka - 1) * ab_dim1 + 1] = work[*n + j] * ab[(j + *ka
  982. - 1) * ab_dim1 + 1];
  983. /* L570: */
  984. }
  985. /* generate rotations in 1st set to annihilate elements which */
  986. /* have been created outside the band */
  987. if (nrt > 0) {
  988. _starpu_dlargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
  989. &ka1, &work[*n + j1], &ka1);
  990. }
  991. if (nr > 0) {
  992. /* apply rotations in 1st set from the left */
  993. i__1 = *ka - 1;
  994. for (l = 1; l <= i__1; ++l) {
  995. _starpu_dlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  996. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &work[*n
  997. + j1], &work[j1], &ka1);
  998. /* L580: */
  999. }
  1000. /* apply rotations in 1st set from both sides to diagonal */
  1001. /* blocks */
  1002. _starpu_dlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1003. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &work[*n +
  1004. j1], &work[j1], &ka1);
  1005. }
  1006. /* start applying rotations in 1st set from the right */
  1007. i__1 = *kb - k + 1;
  1008. for (l = *ka - 1; l >= i__1; --l) {
  1009. nrt = (j2 + l - 1) / ka1;
  1010. j1t = j2 - (nrt - 1) * ka1;
  1011. if (nrt > 0) {
  1012. _starpu_dlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1013. j1t - 1) * ab_dim1], &inca, &work[*n + j1t], &
  1014. work[j1t], &ka1);
  1015. }
  1016. /* L590: */
  1017. }
  1018. if (wantx) {
  1019. /* post-multiply X by product of rotations in 1st set */
  1020. i__1 = j2;
  1021. i__4 = ka1;
  1022. for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
  1023. _starpu_drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1024. + 1], &c__1, &work[*n + j], &work[j]);
  1025. /* L600: */
  1026. }
  1027. }
  1028. /* L610: */
  1029. }
  1030. if (update) {
  1031. if (i2 > 0 && kbt > 0) {
  1032. /* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
  1033. /* band and store it in WORK(m-kb+i+kbt) */
  1034. work[m - *kb + i__ + kbt] = -bb[kb1 - kbt + (i__ + kbt) *
  1035. bb_dim1] * ra1;
  1036. }
  1037. }
  1038. for (k = *kb; k >= 1; --k) {
  1039. if (update) {
  1040. /* Computing MAX */
  1041. i__3 = 2, i__4 = k + i0 - m;
  1042. j2 = i__ + k + 1 - max(i__3,i__4) * ka1;
  1043. } else {
  1044. /* Computing MAX */
  1045. i__3 = 1, i__4 = k + i0 - m;
  1046. j2 = i__ + k + 1 - max(i__3,i__4) * ka1;
  1047. }
  1048. /* finish applying rotations in 2nd set from the right */
  1049. for (l = *kb - k; l >= 1; --l) {
  1050. nrt = (j2 + *ka + l - 1) / ka1;
  1051. j1t = j2 - (nrt - 1) * ka1;
  1052. if (nrt > 0) {
  1053. _starpu_dlartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
  1054. l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &work[*
  1055. n + m - *kb + j1t + *ka], &work[m - *kb + j1t + *
  1056. ka], &ka1);
  1057. }
  1058. /* L620: */
  1059. }
  1060. nr = (j2 + *ka - 1) / ka1;
  1061. j1 = j2 - (nr - 1) * ka1;
  1062. i__3 = j2;
  1063. i__4 = ka1;
  1064. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1065. work[m - *kb + j] = work[m - *kb + j + *ka];
  1066. work[*n + m - *kb + j] = work[*n + m - *kb + j + *ka];
  1067. /* L630: */
  1068. }
  1069. i__4 = j2;
  1070. i__3 = ka1;
  1071. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1072. /* create nonzero element a(j-1,j+ka) outside the band */
  1073. /* and store it in WORK(m-kb+j) */
  1074. work[m - *kb + j] *= ab[(j + *ka - 1) * ab_dim1 + 1];
  1075. ab[(j + *ka - 1) * ab_dim1 + 1] = work[*n + m - *kb + j] * ab[
  1076. (j + *ka - 1) * ab_dim1 + 1];
  1077. /* L640: */
  1078. }
  1079. if (update) {
  1080. if (i__ + k > ka1 && k <= kbt) {
  1081. work[m - *kb + i__ + k - *ka] = work[m - *kb + i__ + k];
  1082. }
  1083. }
  1084. /* L650: */
  1085. }
  1086. for (k = *kb; k >= 1; --k) {
  1087. /* Computing MAX */
  1088. i__3 = 1, i__4 = k + i0 - m;
  1089. j2 = i__ + k + 1 - max(i__3,i__4) * ka1;
  1090. nr = (j2 + *ka - 1) / ka1;
  1091. j1 = j2 - (nr - 1) * ka1;
  1092. if (nr > 0) {
  1093. /* generate rotations in 2nd set to annihilate elements */
  1094. /* which have been created outside the band */
  1095. _starpu_dlargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
  1096. kb + j1], &ka1, &work[*n + m - *kb + j1], &ka1);
  1097. /* apply rotations in 2nd set from the left */
  1098. i__3 = *ka - 1;
  1099. for (l = 1; l <= i__3; ++l) {
  1100. _starpu_dlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1101. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &work[*n
  1102. + m - *kb + j1], &work[m - *kb + j1], &ka1);
  1103. /* L660: */
  1104. }
  1105. /* apply rotations in 2nd set from both sides to diagonal */
  1106. /* blocks */
  1107. _starpu_dlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1108. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &work[*n +
  1109. m - *kb + j1], &work[m - *kb + j1], &ka1);
  1110. }
  1111. /* start applying rotations in 2nd set from the right */
  1112. i__3 = *kb - k + 1;
  1113. for (l = *ka - 1; l >= i__3; --l) {
  1114. nrt = (j2 + l - 1) / ka1;
  1115. j1t = j2 - (nrt - 1) * ka1;
  1116. if (nrt > 0) {
  1117. _starpu_dlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1118. j1t - 1) * ab_dim1], &inca, &work[*n + m - *kb +
  1119. j1t], &work[m - *kb + j1t], &ka1);
  1120. }
  1121. /* L670: */
  1122. }
  1123. if (wantx) {
  1124. /* post-multiply X by product of rotations in 2nd set */
  1125. i__3 = j2;
  1126. i__4 = ka1;
  1127. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1128. _starpu_drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1129. + 1], &c__1, &work[*n + m - *kb + j], &work[m - *
  1130. kb + j]);
  1131. /* L680: */
  1132. }
  1133. }
  1134. /* L690: */
  1135. }
  1136. i__4 = *kb - 1;
  1137. for (k = 1; k <= i__4; ++k) {
  1138. /* Computing MAX */
  1139. i__3 = 1, i__1 = k + i0 - m + 1;
  1140. j2 = i__ + k + 1 - max(i__3,i__1) * ka1;
  1141. /* finish applying rotations in 1st set from the right */
  1142. for (l = *kb - k; l >= 1; --l) {
  1143. nrt = (j2 + l - 1) / ka1;
  1144. j1t = j2 - (nrt - 1) * ka1;
  1145. if (nrt > 0) {
  1146. _starpu_dlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1147. j1t - 1) * ab_dim1], &inca, &work[*n + j1t], &
  1148. work[j1t], &ka1);
  1149. }
  1150. /* L700: */
  1151. }
  1152. /* L710: */
  1153. }
  1154. if (*kb > 1) {
  1155. /* Computing MIN */
  1156. i__3 = i__ + *kb;
  1157. i__4 = min(i__3,m) - (*ka << 1) - 1;
  1158. for (j = 2; j <= i__4; ++j) {
  1159. work[*n + j] = work[*n + j + *ka];
  1160. work[j] = work[j + *ka];
  1161. /* L720: */
  1162. }
  1163. }
  1164. } else {
  1165. /* Transform A, working with the lower triangle */
  1166. if (update) {
  1167. /* Form inv(S(i))**T * A * inv(S(i)) */
  1168. bii = bb[i__ * bb_dim1 + 1];
  1169. i__4 = i__;
  1170. for (j = i1; j <= i__4; ++j) {
  1171. ab[i__ - j + 1 + j * ab_dim1] /= bii;
  1172. /* L730: */
  1173. }
  1174. /* Computing MIN */
  1175. i__3 = *n, i__1 = i__ + *ka;
  1176. i__4 = min(i__3,i__1);
  1177. for (j = i__; j <= i__4; ++j) {
  1178. ab[j - i__ + 1 + i__ * ab_dim1] /= bii;
  1179. /* L740: */
  1180. }
  1181. i__4 = i__ + kbt;
  1182. for (k = i__ + 1; k <= i__4; ++k) {
  1183. i__3 = i__ + kbt;
  1184. for (j = k; j <= i__3; ++j) {
  1185. ab[j - k + 1 + k * ab_dim1] = ab[j - k + 1 + k * ab_dim1]
  1186. - bb[j - i__ + 1 + i__ * bb_dim1] * ab[k - i__ +
  1187. 1 + i__ * ab_dim1] - bb[k - i__ + 1 + i__ *
  1188. bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1] + ab[
  1189. i__ * ab_dim1 + 1] * bb[j - i__ + 1 + i__ *
  1190. bb_dim1] * bb[k - i__ + 1 + i__ * bb_dim1];
  1191. /* L750: */
  1192. }
  1193. /* Computing MIN */
  1194. i__1 = *n, i__2 = i__ + *ka;
  1195. i__3 = min(i__1,i__2);
  1196. for (j = i__ + kbt + 1; j <= i__3; ++j) {
  1197. ab[j - k + 1 + k * ab_dim1] -= bb[k - i__ + 1 + i__ *
  1198. bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1];
  1199. /* L760: */
  1200. }
  1201. /* L770: */
  1202. }
  1203. i__4 = i__;
  1204. for (j = i1; j <= i__4; ++j) {
  1205. /* Computing MIN */
  1206. i__1 = j + *ka, i__2 = i__ + kbt;
  1207. i__3 = min(i__1,i__2);
  1208. for (k = i__ + 1; k <= i__3; ++k) {
  1209. ab[k - j + 1 + j * ab_dim1] -= bb[k - i__ + 1 + i__ *
  1210. bb_dim1] * ab[i__ - j + 1 + j * ab_dim1];
  1211. /* L780: */
  1212. }
  1213. /* L790: */
  1214. }
  1215. if (wantx) {
  1216. /* post-multiply X by inv(S(i)) */
  1217. d__1 = 1. / bii;
  1218. _starpu_dscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
  1219. if (kbt > 0) {
  1220. _starpu_dger_(&nx, &kbt, &c_b20, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1221. i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
  1222. + 1], ldx);
  1223. }
  1224. }
  1225. /* store a(i,i1) in RA1 for use in next loop over K */
  1226. ra1 = ab[i__ - i1 + 1 + i1 * ab_dim1];
  1227. }
  1228. /* Generate and apply vectors of rotations to chase all the */
  1229. /* existing bulges KA positions up toward the top of the band */
  1230. i__4 = *kb - 1;
  1231. for (k = 1; k <= i__4; ++k) {
  1232. if (update) {
  1233. /* Determine the rotations which would annihilate the bulge */
  1234. /* which has in theory just been created */
  1235. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1236. /* generate rotation to annihilate a(i,i+k-ka-1) */
  1237. _starpu_dlartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
  1238. work[*n + i__ + k - *ka], &work[i__ + k - *ka], &
  1239. ra);
  1240. /* create nonzero element a(i+k,i+k-ka-1) outside the */
  1241. /* band and store it in WORK(m-kb+i+k) */
  1242. t = -bb[k + 1 + i__ * bb_dim1] * ra1;
  1243. work[m - *kb + i__ + k] = work[*n + i__ + k - *ka] * t -
  1244. work[i__ + k - *ka] * ab[ka1 + (i__ + k - *ka) *
  1245. ab_dim1];
  1246. ab[ka1 + (i__ + k - *ka) * ab_dim1] = work[i__ + k - *ka]
  1247. * t + work[*n + i__ + k - *ka] * ab[ka1 + (i__ +
  1248. k - *ka) * ab_dim1];
  1249. ra1 = ra;
  1250. }
  1251. }
  1252. /* Computing MAX */
  1253. i__3 = 1, i__1 = k + i0 - m + 1;
  1254. j2 = i__ + k + 1 - max(i__3,i__1) * ka1;
  1255. nr = (j2 + *ka - 1) / ka1;
  1256. j1 = j2 - (nr - 1) * ka1;
  1257. if (update) {
  1258. /* Computing MIN */
  1259. i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1260. j2t = min(i__3,i__1);
  1261. } else {
  1262. j2t = j2;
  1263. }
  1264. nrt = (j2t + *ka - 1) / ka1;
  1265. i__3 = j2t;
  1266. i__1 = ka1;
  1267. for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1268. /* create nonzero element a(j+ka,j-1) outside the band */
  1269. /* and store it in WORK(j) */
  1270. work[j] *= ab[ka1 + (j - 1) * ab_dim1];
  1271. ab[ka1 + (j - 1) * ab_dim1] = work[*n + j] * ab[ka1 + (j - 1)
  1272. * ab_dim1];
  1273. /* L800: */
  1274. }
  1275. /* generate rotations in 1st set to annihilate elements which */
  1276. /* have been created outside the band */
  1277. if (nrt > 0) {
  1278. _starpu_dlargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
  1279. &work[*n + j1], &ka1);
  1280. }
  1281. if (nr > 0) {
  1282. /* apply rotations in 1st set from the right */
  1283. i__1 = *ka - 1;
  1284. for (l = 1; l <= i__1; ++l) {
  1285. _starpu_dlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  1286. + (j1 - 1) * ab_dim1], &inca, &work[*n + j1], &
  1287. work[j1], &ka1);
  1288. /* L810: */
  1289. }
  1290. /* apply rotations in 1st set from both sides to diagonal */
  1291. /* blocks */
  1292. _starpu_dlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  1293. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &work[*n + j1]
  1294. , &work[j1], &ka1);
  1295. }
  1296. /* start applying rotations in 1st set from the left */
  1297. i__1 = *kb - k + 1;
  1298. for (l = *ka - 1; l >= i__1; --l) {
  1299. nrt = (j2 + l - 1) / ka1;
  1300. j1t = j2 - (nrt - 1) * ka1;
  1301. if (nrt > 0) {
  1302. _starpu_dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  1303. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  1304. &inca, &work[*n + j1t], &work[j1t], &ka1);
  1305. }
  1306. /* L820: */
  1307. }
  1308. if (wantx) {
  1309. /* post-multiply X by product of rotations in 1st set */
  1310. i__1 = j2;
  1311. i__3 = ka1;
  1312. for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1313. _starpu_drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1314. + 1], &c__1, &work[*n + j], &work[j]);
  1315. /* L830: */
  1316. }
  1317. }
  1318. /* L840: */
  1319. }
  1320. if (update) {
  1321. if (i2 > 0 && kbt > 0) {
  1322. /* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
  1323. /* band and store it in WORK(m-kb+i+kbt) */
  1324. work[m - *kb + i__ + kbt] = -bb[kbt + 1 + i__ * bb_dim1] *
  1325. ra1;
  1326. }
  1327. }
  1328. for (k = *kb; k >= 1; --k) {
  1329. if (update) {
  1330. /* Computing MAX */
  1331. i__4 = 2, i__3 = k + i0 - m;
  1332. j2 = i__ + k + 1 - max(i__4,i__3) * ka1;
  1333. } else {
  1334. /* Computing MAX */
  1335. i__4 = 1, i__3 = k + i0 - m;
  1336. j2 = i__ + k + 1 - max(i__4,i__3) * ka1;
  1337. }
  1338. /* finish applying rotations in 2nd set from the left */
  1339. for (l = *kb - k; l >= 1; --l) {
  1340. nrt = (j2 + *ka + l - 1) / ka1;
  1341. j1t = j2 - (nrt - 1) * ka1;
  1342. if (nrt > 0) {
  1343. _starpu_dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
  1344. &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
  1345. inca, &work[*n + m - *kb + j1t + *ka], &work[m - *
  1346. kb + j1t + *ka], &ka1);
  1347. }
  1348. /* L850: */
  1349. }
  1350. nr = (j2 + *ka - 1) / ka1;
  1351. j1 = j2 - (nr - 1) * ka1;
  1352. i__4 = j2;
  1353. i__3 = ka1;
  1354. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1355. work[m - *kb + j] = work[m - *kb + j + *ka];
  1356. work[*n + m - *kb + j] = work[*n + m - *kb + j + *ka];
  1357. /* L860: */
  1358. }
  1359. i__3 = j2;
  1360. i__4 = ka1;
  1361. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1362. /* create nonzero element a(j+ka,j-1) outside the band */
  1363. /* and store it in WORK(m-kb+j) */
  1364. work[m - *kb + j] *= ab[ka1 + (j - 1) * ab_dim1];
  1365. ab[ka1 + (j - 1) * ab_dim1] = work[*n + m - *kb + j] * ab[ka1
  1366. + (j - 1) * ab_dim1];
  1367. /* L870: */
  1368. }
  1369. if (update) {
  1370. if (i__ + k > ka1 && k <= kbt) {
  1371. work[m - *kb + i__ + k - *ka] = work[m - *kb + i__ + k];
  1372. }
  1373. }
  1374. /* L880: */
  1375. }
  1376. for (k = *kb; k >= 1; --k) {
  1377. /* Computing MAX */
  1378. i__4 = 1, i__3 = k + i0 - m;
  1379. j2 = i__ + k + 1 - max(i__4,i__3) * ka1;
  1380. nr = (j2 + *ka - 1) / ka1;
  1381. j1 = j2 - (nr - 1) * ka1;
  1382. if (nr > 0) {
  1383. /* generate rotations in 2nd set to annihilate elements */
  1384. /* which have been created outside the band */
  1385. _starpu_dlargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
  1386. j1], &ka1, &work[*n + m - *kb + j1], &ka1);
  1387. /* apply rotations in 2nd set from the right */
  1388. i__4 = *ka - 1;
  1389. for (l = 1; l <= i__4; ++l) {
  1390. _starpu_dlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  1391. + (j1 - 1) * ab_dim1], &inca, &work[*n + m - *kb
  1392. + j1], &work[m - *kb + j1], &ka1);
  1393. /* L890: */
  1394. }
  1395. /* apply rotations in 2nd set from both sides to diagonal */
  1396. /* blocks */
  1397. _starpu_dlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  1398. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &work[*n + m
  1399. - *kb + j1], &work[m - *kb + j1], &ka1);
  1400. }
  1401. /* start applying rotations in 2nd set from the left */
  1402. i__4 = *kb - k + 1;
  1403. for (l = *ka - 1; l >= i__4; --l) {
  1404. nrt = (j2 + l - 1) / ka1;
  1405. j1t = j2 - (nrt - 1) * ka1;
  1406. if (nrt > 0) {
  1407. _starpu_dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  1408. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  1409. &inca, &work[*n + m - *kb + j1t], &work[m - *kb
  1410. + j1t], &ka1);
  1411. }
  1412. /* L900: */
  1413. }
  1414. if (wantx) {
  1415. /* post-multiply X by product of rotations in 2nd set */
  1416. i__4 = j2;
  1417. i__3 = ka1;
  1418. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1419. _starpu_drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1420. + 1], &c__1, &work[*n + m - *kb + j], &work[m - *
  1421. kb + j]);
  1422. /* L910: */
  1423. }
  1424. }
  1425. /* L920: */
  1426. }
  1427. i__3 = *kb - 1;
  1428. for (k = 1; k <= i__3; ++k) {
  1429. /* Computing MAX */
  1430. i__4 = 1, i__1 = k + i0 - m + 1;
  1431. j2 = i__ + k + 1 - max(i__4,i__1) * ka1;
  1432. /* finish applying rotations in 1st set from the left */
  1433. for (l = *kb - k; l >= 1; --l) {
  1434. nrt = (j2 + l - 1) / ka1;
  1435. j1t = j2 - (nrt - 1) * ka1;
  1436. if (nrt > 0) {
  1437. _starpu_dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  1438. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  1439. &inca, &work[*n + j1t], &work[j1t], &ka1);
  1440. }
  1441. /* L930: */
  1442. }
  1443. /* L940: */
  1444. }
  1445. if (*kb > 1) {
  1446. /* Computing MIN */
  1447. i__4 = i__ + *kb;
  1448. i__3 = min(i__4,m) - (*ka << 1) - 1;
  1449. for (j = 2; j <= i__3; ++j) {
  1450. work[*n + j] = work[*n + j + *ka];
  1451. work[j] = work[j + *ka];
  1452. /* L950: */
  1453. }
  1454. }
  1455. }
  1456. goto L490;
  1457. /* End of DSBGST */
  1458. } /* _starpu_dsbgst_ */