123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521 |
- /* dsbevx.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b14 = 1.;
- static integer c__1 = 1;
- static doublereal c_b34 = 0.;
- /* Subroutine */ int _starpu_dsbevx_(char *jobz, char *range, char *uplo, integer *n,
- integer *kd, doublereal *ab, integer *ldab, doublereal *q, integer *
- ldq, doublereal *vl, doublereal *vu, integer *il, integer *iu,
- doublereal *abstol, integer *m, doublereal *w, doublereal *z__,
- integer *ldz, doublereal *work, integer *iwork, integer *ifail,
- integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1,
- i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, jj;
- doublereal eps, vll, vuu, tmp1;
- integer indd, inde;
- doublereal anrm;
- integer imax;
- doublereal rmin, rmax;
- logical test;
- integer itmp1, indee;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal sigma;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- integer iinfo;
- char order[1];
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer
- *, doublereal *, integer *);
- logical lower, wantz;
- extern doublereal _starpu_dlamch_(char *);
- logical alleig, indeig;
- integer iscale, indibl;
- extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- extern doublereal _starpu_dlansb_(char *, char *, integer *, integer *,
- doublereal *, integer *, doublereal *);
- logical valeig;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *);
- doublereal safmin;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal abstll, bignum;
- extern /* Subroutine */ int _starpu_dsbtrd_(char *, char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *);
- integer indisp;
- extern /* Subroutine */ int _starpu_dstein_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *, doublereal *,
- integer *, doublereal *, integer *, integer *, integer *),
- _starpu_dsterf_(integer *, doublereal *, doublereal *, integer *);
- integer indiwo;
- extern /* Subroutine */ int _starpu_dstebz_(char *, char *, integer *, doublereal
- *, doublereal *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *, doublereal *, integer *, integer *);
- integer indwrk;
- extern /* Subroutine */ int _starpu_dsteqr_(char *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *);
- integer nsplit;
- doublereal smlnum;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSBEVX computes selected eigenvalues and, optionally, eigenvectors */
- /* of a real symmetric band matrix A. Eigenvalues and eigenvectors can */
- /* be selected by specifying either a range of values or a range of */
- /* indices for the desired eigenvalues. */
- /* Arguments */
- /* ========= */
- /* JOBZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only; */
- /* = 'V': Compute eigenvalues and eigenvectors. */
- /* RANGE (input) CHARACTER*1 */
- /* = 'A': all eigenvalues will be found; */
- /* = 'V': all eigenvalues in the half-open interval (VL,VU] */
- /* will be found; */
- /* = 'I': the IL-th through IU-th eigenvalues will be found. */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* KD (input) INTEGER */
- /* The number of superdiagonals of the matrix A if UPLO = 'U', */
- /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
- /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
- /* On entry, the upper or lower triangle of the symmetric band */
- /* matrix A, stored in the first KD+1 rows of the array. The */
- /* j-th column of A is stored in the j-th column of the array AB */
- /* as follows: */
- /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
- /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
- /* On exit, AB is overwritten by values generated during the */
- /* reduction to tridiagonal form. If UPLO = 'U', the first */
- /* superdiagonal and the diagonal of the tridiagonal matrix T */
- /* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
- /* the diagonal and first subdiagonal of T are returned in the */
- /* first two rows of AB. */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array AB. LDAB >= KD + 1. */
- /* Q (output) DOUBLE PRECISION array, dimension (LDQ, N) */
- /* If JOBZ = 'V', the N-by-N orthogonal matrix used in the */
- /* reduction to tridiagonal form. */
- /* If JOBZ = 'N', the array Q is not referenced. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. If JOBZ = 'V', then */
- /* LDQ >= max(1,N). */
- /* VL (input) DOUBLE PRECISION */
- /* VU (input) DOUBLE PRECISION */
- /* If RANGE='V', the lower and upper bounds of the interval to */
- /* be searched for eigenvalues. VL < VU. */
- /* Not referenced if RANGE = 'A' or 'I'. */
- /* IL (input) INTEGER */
- /* IU (input) INTEGER */
- /* If RANGE='I', the indices (in ascending order) of the */
- /* smallest and largest eigenvalues to be returned. */
- /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
- /* Not referenced if RANGE = 'A' or 'V'. */
- /* ABSTOL (input) DOUBLE PRECISION */
- /* The absolute error tolerance for the eigenvalues. */
- /* An approximate eigenvalue is accepted as converged */
- /* when it is determined to lie in an interval [a,b] */
- /* of width less than or equal to */
- /* ABSTOL + EPS * max( |a|,|b| ) , */
- /* where EPS is the machine precision. If ABSTOL is less than */
- /* or equal to zero, then EPS*|T| will be used in its place, */
- /* where |T| is the 1-norm of the tridiagonal matrix obtained */
- /* by reducing AB to tridiagonal form. */
- /* Eigenvalues will be computed most accurately when ABSTOL is */
- /* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
- /* If this routine returns with INFO>0, indicating that some */
- /* eigenvectors did not converge, try setting ABSTOL to */
- /* 2*DLAMCH('S'). */
- /* See "Computing Small Singular Values of Bidiagonal Matrices */
- /* with Guaranteed High Relative Accuracy," by Demmel and */
- /* Kahan, LAPACK Working Note #3. */
- /* M (output) INTEGER */
- /* The total number of eigenvalues found. 0 <= M <= N. */
- /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* The first M elements contain the selected eigenvalues in */
- /* ascending order. */
- /* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
- /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
- /* contain the orthonormal eigenvectors of the matrix A */
- /* corresponding to the selected eigenvalues, with the i-th */
- /* column of Z holding the eigenvector associated with W(i). */
- /* If an eigenvector fails to converge, then that column of Z */
- /* contains the latest approximation to the eigenvector, and the */
- /* index of the eigenvector is returned in IFAIL. */
- /* If JOBZ = 'N', then Z is not referenced. */
- /* Note: the user must ensure that at least max(1,M) columns are */
- /* supplied in the array Z; if RANGE = 'V', the exact value of M */
- /* is not known in advance and an upper bound must be used. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1, and if */
- /* JOBZ = 'V', LDZ >= max(1,N). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (7*N) */
- /* IWORK (workspace) INTEGER array, dimension (5*N) */
- /* IFAIL (output) INTEGER array, dimension (N) */
- /* If JOBZ = 'V', then if INFO = 0, the first M elements of */
- /* IFAIL are zero. If INFO > 0, then IFAIL contains the */
- /* indices of the eigenvectors that failed to converge. */
- /* If JOBZ = 'N', then IFAIL is not referenced. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = i, then i eigenvectors failed to converge. */
- /* Their indices are stored in array IFAIL. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- --iwork;
- --ifail;
- /* Function Body */
- wantz = _starpu_lsame_(jobz, "V");
- alleig = _starpu_lsame_(range, "A");
- valeig = _starpu_lsame_(range, "V");
- indeig = _starpu_lsame_(range, "I");
- lower = _starpu_lsame_(uplo, "L");
- *info = 0;
- if (! (wantz || _starpu_lsame_(jobz, "N"))) {
- *info = -1;
- } else if (! (alleig || valeig || indeig)) {
- *info = -2;
- } else if (! (lower || _starpu_lsame_(uplo, "U"))) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*kd < 0) {
- *info = -5;
- } else if (*ldab < *kd + 1) {
- *info = -7;
- } else if (wantz && *ldq < max(1,*n)) {
- *info = -9;
- } else {
- if (valeig) {
- if (*n > 0 && *vu <= *vl) {
- *info = -11;
- }
- } else if (indeig) {
- if (*il < 1 || *il > max(1,*n)) {
- *info = -12;
- } else if (*iu < min(*n,*il) || *iu > *n) {
- *info = -13;
- }
- }
- }
- if (*info == 0) {
- if (*ldz < 1 || wantz && *ldz < *n) {
- *info = -18;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSBEVX", &i__1);
- return 0;
- }
- /* Quick return if possible */
- *m = 0;
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- *m = 1;
- if (lower) {
- tmp1 = ab[ab_dim1 + 1];
- } else {
- tmp1 = ab[*kd + 1 + ab_dim1];
- }
- if (valeig) {
- if (! (*vl < tmp1 && *vu >= tmp1)) {
- *m = 0;
- }
- }
- if (*m == 1) {
- w[1] = tmp1;
- if (wantz) {
- z__[z_dim1 + 1] = 1.;
- }
- }
- return 0;
- }
- /* Get machine constants. */
- safmin = _starpu_dlamch_("Safe minimum");
- eps = _starpu_dlamch_("Precision");
- smlnum = safmin / eps;
- bignum = 1. / smlnum;
- rmin = sqrt(smlnum);
- /* Computing MIN */
- d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
- rmax = min(d__1,d__2);
- /* Scale matrix to allowable range, if necessary. */
- iscale = 0;
- abstll = *abstol;
- if (valeig) {
- vll = *vl;
- vuu = *vu;
- } else {
- vll = 0.;
- vuu = 0.;
- }
- anrm = _starpu_dlansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);
- if (anrm > 0. && anrm < rmin) {
- iscale = 1;
- sigma = rmin / anrm;
- } else if (anrm > rmax) {
- iscale = 1;
- sigma = rmax / anrm;
- }
- if (iscale == 1) {
- if (lower) {
- _starpu_dlascl_("B", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab,
- info);
- } else {
- _starpu_dlascl_("Q", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab,
- info);
- }
- if (*abstol > 0.) {
- abstll = *abstol * sigma;
- }
- if (valeig) {
- vll = *vl * sigma;
- vuu = *vu * sigma;
- }
- }
- /* Call DSBTRD to reduce symmetric band matrix to tridiagonal form. */
- indd = 1;
- inde = indd + *n;
- indwrk = inde + *n;
- _starpu_dsbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &work[indd], &work[inde],
- &q[q_offset], ldq, &work[indwrk], &iinfo);
- /* If all eigenvalues are desired and ABSTOL is less than or equal */
- /* to zero, then call DSTERF or SSTEQR. If this fails for some */
- /* eigenvalue, then try DSTEBZ. */
- test = FALSE_;
- if (indeig) {
- if (*il == 1 && *iu == *n) {
- test = TRUE_;
- }
- }
- if ((alleig || test) && *abstol <= 0.) {
- _starpu_dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
- indee = indwrk + (*n << 1);
- if (! wantz) {
- i__1 = *n - 1;
- _starpu_dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
- _starpu_dsterf_(n, &w[1], &work[indee], info);
- } else {
- _starpu_dlacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
- i__1 = *n - 1;
- _starpu_dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
- _starpu_dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
- indwrk], info);
- if (*info == 0) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ifail[i__] = 0;
- /* L10: */
- }
- }
- }
- if (*info == 0) {
- *m = *n;
- goto L30;
- }
- *info = 0;
- }
- /* Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */
- if (wantz) {
- *(unsigned char *)order = 'B';
- } else {
- *(unsigned char *)order = 'E';
- }
- indibl = 1;
- indisp = indibl + *n;
- indiwo = indisp + *n;
- _starpu_dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
- inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
- indwrk], &iwork[indiwo], info);
- if (wantz) {
- _starpu_dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
- indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
- ifail[1], info);
- /* Apply orthogonal matrix used in reduction to tridiagonal */
- /* form to eigenvectors returned by DSTEIN. */
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dcopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
- _starpu_dgemv_("N", n, n, &c_b14, &q[q_offset], ldq, &work[1], &c__1, &
- c_b34, &z__[j * z_dim1 + 1], &c__1);
- /* L20: */
- }
- }
- /* If matrix was scaled, then rescale eigenvalues appropriately. */
- L30:
- if (iscale == 1) {
- if (*info == 0) {
- imax = *m;
- } else {
- imax = *info - 1;
- }
- d__1 = 1. / sigma;
- _starpu_dscal_(&imax, &d__1, &w[1], &c__1);
- }
- /* If eigenvalues are not in order, then sort them, along with */
- /* eigenvectors. */
- if (wantz) {
- i__1 = *m - 1;
- for (j = 1; j <= i__1; ++j) {
- i__ = 0;
- tmp1 = w[j];
- i__2 = *m;
- for (jj = j + 1; jj <= i__2; ++jj) {
- if (w[jj] < tmp1) {
- i__ = jj;
- tmp1 = w[jj];
- }
- /* L40: */
- }
- if (i__ != 0) {
- itmp1 = iwork[indibl + i__ - 1];
- w[i__] = w[j];
- iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
- w[j] = tmp1;
- iwork[indibl + j - 1] = itmp1;
- _starpu_dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
- &c__1);
- if (*info != 0) {
- itmp1 = ifail[i__];
- ifail[i__] = ifail[j];
- ifail[j] = itmp1;
- }
- }
- /* L50: */
- }
- }
- return 0;
- /* End of DSBEVX */
- } /* _starpu_dsbevx_ */
|