123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- /* dptts2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dptts2_(integer *n, integer *nrhs, doublereal *d__,
- doublereal *e, doublereal *b, integer *ldb)
- {
- /* System generated locals */
- integer b_dim1, b_offset, i__1, i__2;
- doublereal d__1;
- /* Local variables */
- integer i__, j;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPTTS2 solves a tridiagonal system of the form */
- /* A * X = B */
- /* using the L*D*L' factorization of A computed by DPTTRF. D is a */
- /* diagonal matrix specified in the vector D, L is a unit bidiagonal */
- /* matrix whose subdiagonal is specified in the vector E, and X and B */
- /* are N by NRHS matrices. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the tridiagonal matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrix B. NRHS >= 0. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The n diagonal elements of the diagonal matrix D from the */
- /* L*D*L' factorization of A. */
- /* E (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) subdiagonal elements of the unit bidiagonal factor */
- /* L from the L*D*L' factorization of A. E can also be regarded */
- /* as the superdiagonal of the unit bidiagonal factor U from the */
- /* factorization A = U'*D*U. */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the right hand side vectors B for the system of */
- /* linear equations. */
- /* On exit, the solution vectors, X. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Quick return if possible */
- /* Parameter adjustments */
- --d__;
- --e;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- if (*n <= 1) {
- if (*n == 1) {
- d__1 = 1. / d__[1];
- _starpu_dscal_(nrhs, &d__1, &b[b_offset], ldb);
- }
- return 0;
- }
- /* Solve A * X = B using the factorization A = L*D*L', */
- /* overwriting each right hand side vector with its solution. */
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- /* Solve L * x = b. */
- i__2 = *n;
- for (i__ = 2; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] -= b[i__ - 1 + j * b_dim1] * e[i__ - 1];
- /* L10: */
- }
- /* Solve D * L' * x = b. */
- b[*n + j * b_dim1] /= d__[*n];
- for (i__ = *n - 1; i__ >= 1; --i__) {
- b[i__ + j * b_dim1] = b[i__ + j * b_dim1] / d__[i__] - b[i__ + 1
- + j * b_dim1] * e[i__];
- /* L20: */
- }
- /* L30: */
- }
- return 0;
- /* End of DPTTS2 */
- } /* _starpu_dptts2_ */
|