123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- /* dpttrf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dpttrf_(integer *n, doublereal *d__, doublereal *e,
- integer *info)
- {
- /* System generated locals */
- integer i__1;
- /* Local variables */
- integer i__, i4;
- doublereal ei;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPTTRF computes the L*D*L' factorization of a real symmetric */
- /* positive definite tridiagonal matrix A. The factorization may also */
- /* be regarded as having the form A = U'*D*U. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the n diagonal elements of the tridiagonal matrix */
- /* A. On exit, the n diagonal elements of the diagonal matrix */
- /* D from the L*D*L' factorization of A. */
- /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, the (n-1) subdiagonal elements of the tridiagonal */
- /* matrix A. On exit, the (n-1) subdiagonal elements of the */
- /* unit bidiagonal factor L from the L*D*L' factorization of A. */
- /* E can also be regarded as the superdiagonal of the unit */
- /* bidiagonal factor U from the U'*D*U factorization of A. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -k, the k-th argument had an illegal value */
- /* > 0: if INFO = k, the leading minor of order k is not */
- /* positive definite; if k < N, the factorization could not */
- /* be completed, while if k = N, the factorization was */
- /* completed, but D(N) <= 0. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --e;
- --d__;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- i__1 = -(*info);
- _starpu_xerbla_("DPTTRF", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Compute the L*D*L' (or U'*D*U) factorization of A. */
- i4 = (*n - 1) % 4;
- i__1 = i4;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (d__[i__] <= 0.) {
- *info = i__;
- goto L30;
- }
- ei = e[i__];
- e[i__] = ei / d__[i__];
- d__[i__ + 1] -= e[i__] * ei;
- /* L10: */
- }
- i__1 = *n - 4;
- for (i__ = i4 + 1; i__ <= i__1; i__ += 4) {
- /* Drop out of the loop if d(i) <= 0: the matrix is not positive */
- /* definite. */
- if (d__[i__] <= 0.) {
- *info = i__;
- goto L30;
- }
- /* Solve for e(i) and d(i+1). */
- ei = e[i__];
- e[i__] = ei / d__[i__];
- d__[i__ + 1] -= e[i__] * ei;
- if (d__[i__ + 1] <= 0.) {
- *info = i__ + 1;
- goto L30;
- }
- /* Solve for e(i+1) and d(i+2). */
- ei = e[i__ + 1];
- e[i__ + 1] = ei / d__[i__ + 1];
- d__[i__ + 2] -= e[i__ + 1] * ei;
- if (d__[i__ + 2] <= 0.) {
- *info = i__ + 2;
- goto L30;
- }
- /* Solve for e(i+2) and d(i+3). */
- ei = e[i__ + 2];
- e[i__ + 2] = ei / d__[i__ + 2];
- d__[i__ + 3] -= e[i__ + 2] * ei;
- if (d__[i__ + 3] <= 0.) {
- *info = i__ + 3;
- goto L30;
- }
- /* Solve for e(i+3) and d(i+4). */
- ei = e[i__ + 3];
- e[i__ + 3] = ei / d__[i__ + 3];
- d__[i__ + 4] -= e[i__ + 3] * ei;
- /* L20: */
- }
- /* Check d(n) for positive definiteness. */
- if (d__[*n] <= 0.) {
- *info = *n;
- }
- L30:
- return 0;
- /* End of DPTTRF */
- } /* _starpu_dpttrf_ */
|