123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- /* dptsvx.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dptsvx_(char *fact, integer *n, integer *nrhs,
- doublereal *d__, doublereal *e, doublereal *df, doublereal *ef,
- doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
- rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *
- info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, x_dim1, x_offset, i__1;
- /* Local variables */
- extern logical _starpu_lsame_(char *, char *);
- doublereal anorm;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- extern doublereal _starpu_dlamch_(char *);
- logical nofact;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dptcon_(integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *), _starpu_dptrfs_(
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, doublereal *, integer *), _starpu_dpttrf_(
- integer *, doublereal *, doublereal *, integer *), _starpu_dpttrs_(
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPTSVX uses the factorization A = L*D*L**T to compute the solution */
- /* to a real system of linear equations A*X = B, where A is an N-by-N */
- /* symmetric positive definite tridiagonal matrix and X and B are */
- /* N-by-NRHS matrices. */
- /* Error bounds on the solution and a condition estimate are also */
- /* provided. */
- /* Description */
- /* =========== */
- /* The following steps are performed: */
- /* 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L */
- /* is a unit lower bidiagonal matrix and D is diagonal. The */
- /* factorization can also be regarded as having the form */
- /* A = U**T*D*U. */
- /* 2. If the leading i-by-i principal minor is not positive definite, */
- /* then the routine returns with INFO = i. Otherwise, the factored */
- /* form of A is used to estimate the condition number of the matrix */
- /* A. If the reciprocal of the condition number is less than machine */
- /* precision, INFO = N+1 is returned as a warning, but the routine */
- /* still goes on to solve for X and compute error bounds as */
- /* described below. */
- /* 3. The system of equations is solved for X using the factored form */
- /* of A. */
- /* 4. Iterative refinement is applied to improve the computed solution */
- /* matrix and calculate error bounds and backward error estimates */
- /* for it. */
- /* Arguments */
- /* ========= */
- /* FACT (input) CHARACTER*1 */
- /* Specifies whether or not the factored form of A has been */
- /* supplied on entry. */
- /* = 'F': On entry, DF and EF contain the factored form of A. */
- /* D, E, DF, and EF will not be modified. */
- /* = 'N': The matrix A will be copied to DF and EF and */
- /* factored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrices B and X. NRHS >= 0. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The n diagonal elements of the tridiagonal matrix A. */
- /* E (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) subdiagonal elements of the tridiagonal matrix A. */
- /* DF (input or output) DOUBLE PRECISION array, dimension (N) */
- /* If FACT = 'F', then DF is an input argument and on entry */
- /* contains the n diagonal elements of the diagonal matrix D */
- /* from the L*D*L**T factorization of A. */
- /* If FACT = 'N', then DF is an output argument and on exit */
- /* contains the n diagonal elements of the diagonal matrix D */
- /* from the L*D*L**T factorization of A. */
- /* EF (input or output) DOUBLE PRECISION array, dimension (N-1) */
- /* If FACT = 'F', then EF is an input argument and on entry */
- /* contains the (n-1) subdiagonal elements of the unit */
- /* bidiagonal factor L from the L*D*L**T factorization of A. */
- /* If FACT = 'N', then EF is an output argument and on exit */
- /* contains the (n-1) subdiagonal elements of the unit */
- /* bidiagonal factor L from the L*D*L**T factorization of A. */
- /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* The N-by-NRHS right hand side matrix B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
- /* If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X. */
- /* LDX (input) INTEGER */
- /* The leading dimension of the array X. LDX >= max(1,N). */
- /* RCOND (output) DOUBLE PRECISION */
- /* The reciprocal condition number of the matrix A. If RCOND */
- /* is less than the machine precision (in particular, if */
- /* RCOND = 0), the matrix is singular to working precision. */
- /* This condition is indicated by a return code of INFO > 0. */
- /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The forward error bound for each solution vector */
- /* X(j) (the j-th column of the solution matrix X). */
- /* If XTRUE is the true solution corresponding to X(j), FERR(j) */
- /* is an estimated upper bound for the magnitude of the largest */
- /* element in (X(j) - XTRUE) divided by the magnitude of the */
- /* largest element in X(j). */
- /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The componentwise relative backward error of each solution */
- /* vector X(j) (i.e., the smallest relative change in any */
- /* element of A or B that makes X(j) an exact solution). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, and i is */
- /* <= N: the leading minor of order i of A is */
- /* not positive definite, so the factorization */
- /* could not be completed, and the solution has not */
- /* been computed. RCOND = 0 is returned. */
- /* = N+1: U is nonsingular, but RCOND is less than machine */
- /* precision, meaning that the matrix is singular */
- /* to working precision. Nevertheless, the */
- /* solution and error bounds are computed because */
- /* there are a number of situations where the */
- /* computed solution can be more accurate than the */
- /* value of RCOND would suggest. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- --df;
- --ef;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1;
- x -= x_offset;
- --ferr;
- --berr;
- --work;
- /* Function Body */
- *info = 0;
- nofact = _starpu_lsame_(fact, "N");
- if (! nofact && ! _starpu_lsame_(fact, "F")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*ldb < max(1,*n)) {
- *info = -9;
- } else if (*ldx < max(1,*n)) {
- *info = -11;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPTSVX", &i__1);
- return 0;
- }
- if (nofact) {
- /* Compute the L*D*L' (or U'*D*U) factorization of A. */
- _starpu_dcopy_(n, &d__[1], &c__1, &df[1], &c__1);
- if (*n > 1) {
- i__1 = *n - 1;
- _starpu_dcopy_(&i__1, &e[1], &c__1, &ef[1], &c__1);
- }
- _starpu_dpttrf_(n, &df[1], &ef[1], info);
- /* Return if INFO is non-zero. */
- if (*info > 0) {
- *rcond = 0.;
- return 0;
- }
- }
- /* Compute the norm of the matrix A. */
- anorm = _starpu_dlanst_("1", n, &d__[1], &e[1]);
- /* Compute the reciprocal of the condition number of A. */
- _starpu_dptcon_(n, &df[1], &ef[1], &anorm, rcond, &work[1], info);
- /* Compute the solution vectors X. */
- _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
- _starpu_dpttrs_(n, nrhs, &df[1], &ef[1], &x[x_offset], ldx, info);
- /* Use iterative refinement to improve the computed solutions and */
- /* compute error bounds and backward error estimates for them. */
- _starpu_dptrfs_(n, nrhs, &d__[1], &e[1], &df[1], &ef[1], &b[b_offset], ldb, &x[
- x_offset], ldx, &ferr[1], &berr[1], &work[1], info);
- /* Set INFO = N+1 if the matrix is singular to working precision. */
- if (*rcond < _starpu_dlamch_("Epsilon")) {
- *info = *n + 1;
- }
- return 0;
- /* End of DPTSVX */
- } /* _starpu_dptsvx_ */
|