123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 |
- /* dptrfs.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b11 = 1.;
- /* Subroutine */ int _starpu_dptrfs_(integer *n, integer *nrhs, doublereal *d__,
- doublereal *e, doublereal *df, doublereal *ef, doublereal *b, integer
- *ldb, doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr,
- doublereal *work, integer *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
- doublereal d__1, d__2, d__3;
- /* Local variables */
- integer i__, j;
- doublereal s, bi, cx, dx, ex;
- integer ix, nz;
- doublereal eps, safe1, safe2;
- extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *);
- integer count;
- extern doublereal _starpu_dlamch_(char *);
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- doublereal safmin;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal lstres;
- extern /* Subroutine */ int _starpu_dpttrs_(integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPTRFS improves the computed solution to a system of linear */
- /* equations when the coefficient matrix is symmetric positive definite */
- /* and tridiagonal, and provides error bounds and backward error */
- /* estimates for the solution. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrix B. NRHS >= 0. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The n diagonal elements of the tridiagonal matrix A. */
- /* E (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) subdiagonal elements of the tridiagonal matrix A. */
- /* DF (input) DOUBLE PRECISION array, dimension (N) */
- /* The n diagonal elements of the diagonal matrix D from the */
- /* factorization computed by DPTTRF. */
- /* EF (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) subdiagonal elements of the unit bidiagonal factor */
- /* L from the factorization computed by DPTTRF. */
- /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* The right hand side matrix B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
- /* On entry, the solution matrix X, as computed by DPTTRS. */
- /* On exit, the improved solution matrix X. */
- /* LDX (input) INTEGER */
- /* The leading dimension of the array X. LDX >= max(1,N). */
- /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The forward error bound for each solution vector */
- /* X(j) (the j-th column of the solution matrix X). */
- /* If XTRUE is the true solution corresponding to X(j), FERR(j) */
- /* is an estimated upper bound for the magnitude of the largest */
- /* element in (X(j) - XTRUE) divided by the magnitude of the */
- /* largest element in X(j). */
- /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The componentwise relative backward error of each solution */
- /* vector X(j) (i.e., the smallest relative change in */
- /* any element of A or B that makes X(j) an exact solution). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Internal Parameters */
- /* =================== */
- /* ITMAX is the maximum number of steps of iterative refinement. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- --df;
- --ef;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1;
- x -= x_offset;
- --ferr;
- --berr;
- --work;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*nrhs < 0) {
- *info = -2;
- } else if (*ldb < max(1,*n)) {
- *info = -8;
- } else if (*ldx < max(1,*n)) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPTRFS", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0 || *nrhs == 0) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- ferr[j] = 0.;
- berr[j] = 0.;
- /* L10: */
- }
- return 0;
- }
- /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
- nz = 4;
- eps = _starpu_dlamch_("Epsilon");
- safmin = _starpu_dlamch_("Safe minimum");
- safe1 = nz * safmin;
- safe2 = safe1 / eps;
- /* Do for each right hand side */
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- count = 1;
- lstres = 3.;
- L20:
- /* Loop until stopping criterion is satisfied. */
- /* Compute residual R = B - A * X. Also compute */
- /* abs(A)*abs(x) + abs(b) for use in the backward error bound. */
- if (*n == 1) {
- bi = b[j * b_dim1 + 1];
- dx = d__[1] * x[j * x_dim1 + 1];
- work[*n + 1] = bi - dx;
- work[1] = abs(bi) + abs(dx);
- } else {
- bi = b[j * b_dim1 + 1];
- dx = d__[1] * x[j * x_dim1 + 1];
- ex = e[1] * x[j * x_dim1 + 2];
- work[*n + 1] = bi - dx - ex;
- work[1] = abs(bi) + abs(dx) + abs(ex);
- i__2 = *n - 1;
- for (i__ = 2; i__ <= i__2; ++i__) {
- bi = b[i__ + j * b_dim1];
- cx = e[i__ - 1] * x[i__ - 1 + j * x_dim1];
- dx = d__[i__] * x[i__ + j * x_dim1];
- ex = e[i__] * x[i__ + 1 + j * x_dim1];
- work[*n + i__] = bi - cx - dx - ex;
- work[i__] = abs(bi) + abs(cx) + abs(dx) + abs(ex);
- /* L30: */
- }
- bi = b[*n + j * b_dim1];
- cx = e[*n - 1] * x[*n - 1 + j * x_dim1];
- dx = d__[*n] * x[*n + j * x_dim1];
- work[*n + *n] = bi - cx - dx;
- work[*n] = abs(bi) + abs(cx) + abs(dx);
- }
- /* Compute componentwise relative backward error from formula */
- /* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
- /* where abs(Z) is the componentwise absolute value of the matrix */
- /* or vector Z. If the i-th component of the denominator is less */
- /* than SAFE2, then SAFE1 is added to the i-th components of the */
- /* numerator and denominator before dividing. */
- s = 0.;
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (work[i__] > safe2) {
- /* Computing MAX */
- d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
- i__];
- s = max(d__2,d__3);
- } else {
- /* Computing MAX */
- d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1)
- / (work[i__] + safe1);
- s = max(d__2,d__3);
- }
- /* L40: */
- }
- berr[j] = s;
- /* Test stopping criterion. Continue iterating if */
- /* 1) The residual BERR(J) is larger than machine epsilon, and */
- /* 2) BERR(J) decreased by at least a factor of 2 during the */
- /* last iteration, and */
- /* 3) At most ITMAX iterations tried. */
- if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
- /* Update solution and try again. */
- _starpu_dpttrs_(n, &c__1, &df[1], &ef[1], &work[*n + 1], n, info);
- _starpu_daxpy_(n, &c_b11, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1)
- ;
- lstres = berr[j];
- ++count;
- goto L20;
- }
- /* Bound error from formula */
- /* norm(X - XTRUE) / norm(X) .le. FERR = */
- /* norm( abs(inv(A))* */
- /* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
- /* where */
- /* norm(Z) is the magnitude of the largest component of Z */
- /* inv(A) is the inverse of A */
- /* abs(Z) is the componentwise absolute value of the matrix or */
- /* vector Z */
- /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
- /* EPS is machine epsilon */
- /* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
- /* is incremented by SAFE1 if the i-th component of */
- /* abs(A)*abs(X) + abs(B) is less than SAFE2. */
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (work[i__] > safe2) {
- work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps *
- work[i__];
- } else {
- work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps *
- work[i__] + safe1;
- }
- /* L50: */
- }
- ix = _starpu_idamax_(n, &work[1], &c__1);
- ferr[j] = work[ix];
- /* Estimate the norm of inv(A). */
- /* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */
- /* m(i,j) = abs(A(i,j)), i = j, */
- /* m(i,j) = -abs(A(i,j)), i .ne. j, */
- /* and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'. */
- /* Solve M(L) * x = e. */
- work[1] = 1.;
- i__2 = *n;
- for (i__ = 2; i__ <= i__2; ++i__) {
- work[i__] = work[i__ - 1] * (d__1 = ef[i__ - 1], abs(d__1)) + 1.;
- /* L60: */
- }
- /* Solve D * M(L)' * x = b. */
- work[*n] /= df[*n];
- for (i__ = *n - 1; i__ >= 1; --i__) {
- work[i__] = work[i__] / df[i__] + work[i__ + 1] * (d__1 = ef[i__],
- abs(d__1));
- /* L70: */
- }
- /* Compute norm(inv(A)) = max(x(i)), 1<=i<=n. */
- ix = _starpu_idamax_(n, &work[1], &c__1);
- ferr[j] *= (d__1 = work[ix], abs(d__1));
- /* Normalize error. */
- lstres = 0.;
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));
- lstres = max(d__2,d__3);
- /* L80: */
- }
- if (lstres != 0.) {
- ferr[j] /= lstres;
- }
- /* L90: */
- }
- return 0;
- /* End of DPTRFS */
- } /* _starpu_dptrfs_ */
|