123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- /* dpteqr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b7 = 0.;
- static doublereal c_b8 = 1.;
- static integer c__0 = 0;
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dpteqr_(char *compz, integer *n, doublereal *d__,
- doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
- integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- doublereal c__[1] /* was [1][1] */;
- integer i__;
- doublereal vt[1] /* was [1][1] */;
- integer nru;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *), _starpu_dbdsqr_(char *, integer *,
- integer *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *);
- integer icompz;
- extern /* Subroutine */ int _starpu_dpttrf_(integer *, doublereal *, doublereal *,
- integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPTEQR computes all eigenvalues and, optionally, eigenvectors of a */
- /* symmetric positive definite tridiagonal matrix by first factoring the */
- /* matrix using DPTTRF, and then calling DBDSQR to compute the singular */
- /* values of the bidiagonal factor. */
- /* This routine computes the eigenvalues of the positive definite */
- /* tridiagonal matrix to high relative accuracy. This means that if the */
- /* eigenvalues range over many orders of magnitude in size, then the */
- /* small eigenvalues and corresponding eigenvectors will be computed */
- /* more accurately than, for example, with the standard QR method. */
- /* The eigenvectors of a full or band symmetric positive definite matrix */
- /* can also be found if DSYTRD, DSPTRD, or DSBTRD has been used to */
- /* reduce this matrix to tridiagonal form. (The reduction to tridiagonal */
- /* form, however, may preclude the possibility of obtaining high */
- /* relative accuracy in the small eigenvalues of the original matrix, if */
- /* these eigenvalues range over many orders of magnitude.) */
- /* Arguments */
- /* ========= */
- /* COMPZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only. */
- /* = 'V': Compute eigenvectors of original symmetric */
- /* matrix also. Array Z contains the orthogonal */
- /* matrix used to reduce the original matrix to */
- /* tridiagonal form. */
- /* = 'I': Compute eigenvectors of tridiagonal matrix also. */
- /* N (input) INTEGER */
- /* The order of the matrix. N >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the n diagonal elements of the tridiagonal */
- /* matrix. */
- /* On normal exit, D contains the eigenvalues, in descending */
- /* order. */
- /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, the (n-1) subdiagonal elements of the tridiagonal */
- /* matrix. */
- /* On exit, E has been destroyed. */
- /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
- /* On entry, if COMPZ = 'V', the orthogonal matrix used in the */
- /* reduction to tridiagonal form. */
- /* On exit, if COMPZ = 'V', the orthonormal eigenvectors of the */
- /* original symmetric matrix; */
- /* if COMPZ = 'I', the orthonormal eigenvectors of the */
- /* tridiagonal matrix. */
- /* If INFO > 0 on exit, Z contains the eigenvectors associated */
- /* with only the stored eigenvalues. */
- /* If COMPZ = 'N', then Z is not referenced. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1, and if */
- /* COMPZ = 'V' or 'I', LDZ >= max(1,N). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = i, and i is: */
- /* <= N the Cholesky factorization of the matrix could */
- /* not be performed because the i-th principal minor */
- /* was not positive definite. */
- /* > N the SVD algorithm failed to converge; */
- /* if INFO = N+i, i off-diagonal elements of the */
- /* bidiagonal factor did not converge to zero. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- /* Function Body */
- *info = 0;
- if (_starpu_lsame_(compz, "N")) {
- icompz = 0;
- } else if (_starpu_lsame_(compz, "V")) {
- icompz = 1;
- } else if (_starpu_lsame_(compz, "I")) {
- icompz = 2;
- } else {
- icompz = -1;
- }
- if (icompz < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPTEQR", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- if (icompz > 0) {
- z__[z_dim1 + 1] = 1.;
- }
- return 0;
- }
- if (icompz == 2) {
- _starpu_dlaset_("Full", n, n, &c_b7, &c_b8, &z__[z_offset], ldz);
- }
- /* Call DPTTRF to factor the matrix. */
- _starpu_dpttrf_(n, &d__[1], &e[1], info);
- if (*info != 0) {
- return 0;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = sqrt(d__[i__]);
- /* L10: */
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] *= d__[i__];
- /* L20: */
- }
- /* Call DBDSQR to compute the singular values/vectors of the */
- /* bidiagonal factor. */
- if (icompz > 0) {
- nru = *n;
- } else {
- nru = 0;
- }
- _starpu_dbdsqr_("Lower", n, &c__0, &nru, &c__0, &d__[1], &e[1], vt, &c__1, &z__[
- z_offset], ldz, c__, &c__1, &work[1], info);
- /* Square the singular values. */
- if (*info == 0) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] *= d__[i__];
- /* L30: */
- }
- } else {
- *info = *n + *info;
- }
- return 0;
- /* End of DPTEQR */
- } /* _starpu_dpteqr_ */
|