123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- /* dptcon.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dptcon_(integer *n, doublereal *d__, doublereal *e,
- doublereal *anorm, doublereal *rcond, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer i__1;
- doublereal d__1;
- /* Local variables */
- integer i__, ix;
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal ainvnm;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPTCON computes the reciprocal of the condition number (in the */
- /* 1-norm) of a real symmetric positive definite tridiagonal matrix */
- /* using the factorization A = L*D*L**T or A = U**T*D*U computed by */
- /* DPTTRF. */
- /* Norm(inv(A)) is computed by a direct method, and the reciprocal of */
- /* the condition number is computed as */
- /* RCOND = 1 / (ANORM * norm(inv(A))). */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The n diagonal elements of the diagonal matrix D from the */
- /* factorization of A, as computed by DPTTRF. */
- /* E (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) off-diagonal elements of the unit bidiagonal factor */
- /* U or L from the factorization of A, as computed by DPTTRF. */
- /* ANORM (input) DOUBLE PRECISION */
- /* The 1-norm of the original matrix A. */
- /* RCOND (output) DOUBLE PRECISION */
- /* The reciprocal of the condition number of the matrix A, */
- /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the */
- /* 1-norm of inv(A) computed in this routine. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Further Details */
- /* =============== */
- /* The method used is described in Nicholas J. Higham, "Efficient */
- /* Algorithms for Computing the Condition Number of a Tridiagonal */
- /* Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input arguments. */
- /* Parameter adjustments */
- --work;
- --e;
- --d__;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*anorm < 0.) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPTCON", &i__1);
- return 0;
- }
- /* Quick return if possible */
- *rcond = 0.;
- if (*n == 0) {
- *rcond = 1.;
- return 0;
- } else if (*anorm == 0.) {
- return 0;
- }
- /* Check that D(1:N) is positive. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (d__[i__] <= 0.) {
- return 0;
- }
- /* L10: */
- }
- /* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */
- /* m(i,j) = abs(A(i,j)), i = j, */
- /* m(i,j) = -abs(A(i,j)), i .ne. j, */
- /* and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'. */
- /* Solve M(L) * x = e. */
- work[1] = 1.;
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- work[i__] = work[i__ - 1] * (d__1 = e[i__ - 1], abs(d__1)) + 1.;
- /* L20: */
- }
- /* Solve D * M(L)' * x = b. */
- work[*n] /= d__[*n];
- for (i__ = *n - 1; i__ >= 1; --i__) {
- work[i__] = work[i__] / d__[i__] + work[i__ + 1] * (d__1 = e[i__],
- abs(d__1));
- /* L30: */
- }
- /* Compute AINVNM = max(x(i)), 1<=i<=n. */
- ix = _starpu_idamax_(n, &work[1], &c__1);
- ainvnm = (d__1 = work[ix], abs(d__1));
- /* Compute the reciprocal condition number. */
- if (ainvnm != 0.) {
- *rcond = 1. / ainvnm / *anorm;
- }
- return 0;
- /* End of DPTCON */
- } /* _starpu_dptcon_ */
|