123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- /* dpstrf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static doublereal c_b22 = -1.;
- static doublereal c_b24 = 1.;
- /* Subroutine */ int _starpu_dpstrf_(char *uplo, integer *n, doublereal *a, integer *
- lda, integer *piv, integer *rank, doublereal *tol, doublereal *work,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, k, maxlocvar, jb, nb;
- doublereal ajj;
- integer pvt;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- doublereal dtemp;
- integer itemp;
- extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- doublereal dstop;
- logical upper;
- extern /* Subroutine */ int _starpu_dsyrk_(char *, char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- integer *), _starpu_dpstf2_(char *, integer *,
- doublereal *, integer *, integer *, integer *, doublereal *,
- doublereal *, integer *);
- extern doublereal _starpu_dlamch_(char *);
- extern logical _starpu_disnan_(doublereal *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern integer _starpu_dmaxloc_(doublereal *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Craig Lucas, University of Manchester / NAG Ltd. */
- /* October, 2008 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPSTRF computes the Cholesky factorization with complete */
- /* pivoting of a real symmetric positive semidefinite matrix A. */
- /* The factorization has the form */
- /* P' * A * P = U' * U , if UPLO = 'U', */
- /* P' * A * P = L * L', if UPLO = 'L', */
- /* where U is an upper triangular matrix and L is lower triangular, and */
- /* P is stored as vector PIV. */
- /* This algorithm does not attempt to check that A is positive */
- /* semidefinite. This version of the algorithm calls level 3 BLAS. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* Specifies whether the upper or lower triangular part of the */
- /* symmetric matrix A is stored. */
- /* = 'U': Upper triangular */
- /* = 'L': Lower triangular */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
- /* n by n upper triangular part of A contains the upper */
- /* triangular part of the matrix A, and the strictly lower */
- /* triangular part of A is not referenced. If UPLO = 'L', the */
- /* leading n by n lower triangular part of A contains the lower */
- /* triangular part of the matrix A, and the strictly upper */
- /* triangular part of A is not referenced. */
- /* On exit, if INFO = 0, the factor U or L from the Cholesky */
- /* factorization as above. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* PIV (output) INTEGER array, dimension (N) */
- /* PIV is such that the nonzero entries are P( PIV(K), K ) = 1. */
- /* RANK (output) INTEGER */
- /* The rank of A given by the number of steps the algorithm */
- /* completed. */
- /* TOL (input) DOUBLE PRECISION */
- /* User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) ) */
- /* will be used. The algorithm terminates at the (K-1)st step */
- /* if the pivot <= TOL. */
- /* WORK DOUBLE PRECISION array, dimension (2*N) */
- /* Work space. */
- /* INFO (output) INTEGER */
- /* < 0: If INFO = -K, the K-th argument had an illegal value, */
- /* = 0: algorithm completed successfully, and */
- /* > 0: the matrix A is either rank deficient with computed rank */
- /* as returned in RANK, or is indefinite. See Section 7 of */
- /* LAPACK Working Note #161 for further information. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --work;
- --piv;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPSTRF", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Get block size */
- nb = _starpu_ilaenv_(&c__1, "DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1);
- if (nb <= 1 || nb >= *n) {
- /* Use unblocked code */
- _starpu_dpstf2_(uplo, n, &a[a_dim1 + 1], lda, &piv[1], rank, tol, &work[1],
- info);
- goto L200;
- } else {
- /* Initialize PIV */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- piv[i__] = i__;
- /* L100: */
- }
- /* Compute stopping value */
- pvt = 1;
- ajj = a[pvt + pvt * a_dim1];
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- if (a[i__ + i__ * a_dim1] > ajj) {
- pvt = i__;
- ajj = a[pvt + pvt * a_dim1];
- }
- }
- if (ajj == 0. || _starpu_disnan_(&ajj)) {
- *rank = 0;
- *info = 1;
- goto L200;
- }
- /* Compute stopping value if not supplied */
- if (*tol < 0.) {
- dstop = *n * _starpu_dlamch_("Epsilon") * ajj;
- } else {
- dstop = *tol;
- }
- if (upper) {
- /* Compute the Cholesky factorization P' * A * P = U' * U */
- i__1 = *n;
- i__2 = nb;
- for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
- /* Account for last block not being NB wide */
- /* Computing MIN */
- i__3 = nb, i__4 = *n - k + 1;
- jb = min(i__3,i__4);
- /* Set relevant part of first half of WORK to zero, */
- /* holds dot products */
- i__3 = *n;
- for (i__ = k; i__ <= i__3; ++i__) {
- work[i__] = 0.;
- /* L110: */
- }
- i__3 = k + jb - 1;
- for (j = k; j <= i__3; ++j) {
- /* Find pivot, test for exit, else swap rows and columns */
- /* Update dot products, compute possible pivots which are */
- /* stored in the second half of WORK */
- i__4 = *n;
- for (i__ = j; i__ <= i__4; ++i__) {
- if (j > k) {
- /* Computing 2nd power */
- d__1 = a[j - 1 + i__ * a_dim1];
- work[i__] += d__1 * d__1;
- }
- work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];
- /* L120: */
- }
- if (j > 1) {
- maxlocvar = (*n << 1) - (*n + j) + 1;
- itemp = _starpu_dmaxloc_(&work[*n + j], &maxlocvar);
- pvt = itemp + j - 1;
- ajj = work[*n + pvt];
- if (ajj <= dstop || _starpu_disnan_(&ajj)) {
- a[j + j * a_dim1] = ajj;
- goto L190;
- }
- }
- if (j != pvt) {
- /* Pivot OK, so can now swap pivot rows and columns */
- a[pvt + pvt * a_dim1] = a[j + j * a_dim1];
- i__4 = j - 1;
- _starpu_dswap_(&i__4, &a[j * a_dim1 + 1], &c__1, &a[pvt *
- a_dim1 + 1], &c__1);
- if (pvt < *n) {
- i__4 = *n - pvt;
- _starpu_dswap_(&i__4, &a[j + (pvt + 1) * a_dim1], lda, &a[
- pvt + (pvt + 1) * a_dim1], lda);
- }
- i__4 = pvt - j - 1;
- _starpu_dswap_(&i__4, &a[j + (j + 1) * a_dim1], lda, &a[j + 1
- + pvt * a_dim1], &c__1);
- /* Swap dot products and PIV */
- dtemp = work[j];
- work[j] = work[pvt];
- work[pvt] = dtemp;
- itemp = piv[pvt];
- piv[pvt] = piv[j];
- piv[j] = itemp;
- }
- ajj = sqrt(ajj);
- a[j + j * a_dim1] = ajj;
- /* Compute elements J+1:N of row J. */
- if (j < *n) {
- i__4 = j - k;
- i__5 = *n - j;
- _starpu_dgemv_("Trans", &i__4, &i__5, &c_b22, &a[k + (j + 1) *
- a_dim1], lda, &a[k + j * a_dim1], &c__1, &
- c_b24, &a[j + (j + 1) * a_dim1], lda);
- i__4 = *n - j;
- d__1 = 1. / ajj;
- _starpu_dscal_(&i__4, &d__1, &a[j + (j + 1) * a_dim1], lda);
- }
- /* L130: */
- }
- /* Update trailing matrix, J already incremented */
- if (k + jb <= *n) {
- i__3 = *n - j + 1;
- _starpu_dsyrk_("Upper", "Trans", &i__3, &jb, &c_b22, &a[k + j *
- a_dim1], lda, &c_b24, &a[j + j * a_dim1], lda);
- }
- /* L140: */
- }
- } else {
- /* Compute the Cholesky factorization P' * A * P = L * L' */
- i__2 = *n;
- i__1 = nb;
- for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
- /* Account for last block not being NB wide */
- /* Computing MIN */
- i__3 = nb, i__4 = *n - k + 1;
- jb = min(i__3,i__4);
- /* Set relevant part of first half of WORK to zero, */
- /* holds dot products */
- i__3 = *n;
- for (i__ = k; i__ <= i__3; ++i__) {
- work[i__] = 0.;
- /* L150: */
- }
- i__3 = k + jb - 1;
- for (j = k; j <= i__3; ++j) {
- /* Find pivot, test for exit, else swap rows and columns */
- /* Update dot products, compute possible pivots which are */
- /* stored in the second half of WORK */
- i__4 = *n;
- for (i__ = j; i__ <= i__4; ++i__) {
- if (j > k) {
- /* Computing 2nd power */
- d__1 = a[i__ + (j - 1) * a_dim1];
- work[i__] += d__1 * d__1;
- }
- work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];
- /* L160: */
- }
- if (j > 1) {
- maxlocvar = (*n << 1) - (*n + j) + 1;
- itemp = _starpu_dmaxloc_(&work[*n + j], &maxlocvar);
- pvt = itemp + j - 1;
- ajj = work[*n + pvt];
- if (ajj <= dstop || _starpu_disnan_(&ajj)) {
- a[j + j * a_dim1] = ajj;
- goto L190;
- }
- }
- if (j != pvt) {
- /* Pivot OK, so can now swap pivot rows and columns */
- a[pvt + pvt * a_dim1] = a[j + j * a_dim1];
- i__4 = j - 1;
- _starpu_dswap_(&i__4, &a[j + a_dim1], lda, &a[pvt + a_dim1],
- lda);
- if (pvt < *n) {
- i__4 = *n - pvt;
- _starpu_dswap_(&i__4, &a[pvt + 1 + j * a_dim1], &c__1, &a[
- pvt + 1 + pvt * a_dim1], &c__1);
- }
- i__4 = pvt - j - 1;
- _starpu_dswap_(&i__4, &a[j + 1 + j * a_dim1], &c__1, &a[pvt +
- (j + 1) * a_dim1], lda);
- /* Swap dot products and PIV */
- dtemp = work[j];
- work[j] = work[pvt];
- work[pvt] = dtemp;
- itemp = piv[pvt];
- piv[pvt] = piv[j];
- piv[j] = itemp;
- }
- ajj = sqrt(ajj);
- a[j + j * a_dim1] = ajj;
- /* Compute elements J+1:N of column J. */
- if (j < *n) {
- i__4 = *n - j;
- i__5 = j - k;
- _starpu_dgemv_("No Trans", &i__4, &i__5, &c_b22, &a[j + 1 + k
- * a_dim1], lda, &a[j + k * a_dim1], lda, &
- c_b24, &a[j + 1 + j * a_dim1], &c__1);
- i__4 = *n - j;
- d__1 = 1. / ajj;
- _starpu_dscal_(&i__4, &d__1, &a[j + 1 + j * a_dim1], &c__1);
- }
- /* L170: */
- }
- /* Update trailing matrix, J already incremented */
- if (k + jb <= *n) {
- i__3 = *n - j + 1;
- _starpu_dsyrk_("Lower", "No Trans", &i__3, &jb, &c_b22, &a[j + k *
- a_dim1], lda, &c_b24, &a[j + j * a_dim1], lda);
- }
- /* L180: */
- }
- }
- }
- /* Ran to completion, A has full rank */
- *rank = *n;
- goto L200;
- L190:
- /* Rank is the number of steps completed. Set INFO = 1 to signal */
- /* that the factorization cannot be used to solve a system. */
- *rank = j - 1;
- *info = 1;
- L200:
- return 0;
- /* End of DPSTRF */
- } /* _starpu_dpstrf_ */
|