123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- /* dpftrs.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b10 = 1.;
- /* Subroutine */ int _starpu_dpftrs_(char *transr, char *uplo, integer *n, integer *
- nrhs, doublereal *a, doublereal *b, integer *ldb, integer *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, i__1;
- /* Local variables */
- logical normaltransr;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dtfsm_(char *, char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *);
- logical lower;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
- /* -- November 2008 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPFTRS solves a system of linear equations A*X = B with a symmetric */
- /* positive definite matrix A using the Cholesky factorization */
- /* A = U**T*U or A = L*L**T computed by DPFTRF. */
- /* Arguments */
- /* ========= */
- /* TRANSR (input) CHARACTER */
- /* = 'N': The Normal TRANSR of RFP A is stored; */
- /* = 'T': The Transpose TRANSR of RFP A is stored. */
- /* UPLO (input) CHARACTER */
- /* = 'U': Upper triangle of RFP A is stored; */
- /* = 'L': Lower triangle of RFP A is stored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrix B. NRHS >= 0. */
- /* A (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ). */
- /* The triangular factor U or L from the Cholesky factorization */
- /* of RFP A = U**T*U or RFP A = L*L**T, as computed by DPFTRF. */
- /* See note below for more details about RFP A. */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the right hand side matrix B. */
- /* On exit, the solution matrix X. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Notes */
- /* ===== */
- /* We first consider Rectangular Full Packed (RFP) Format when N is */
- /* even. We give an example where N = 6. */
- /* AP is Upper AP is Lower */
- /* 00 01 02 03 04 05 00 */
- /* 11 12 13 14 15 10 11 */
- /* 22 23 24 25 20 21 22 */
- /* 33 34 35 30 31 32 33 */
- /* 44 45 40 41 42 43 44 */
- /* 55 50 51 52 53 54 55 */
- /* Let TRANSR = 'N'. RFP holds AP as follows: */
- /* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
- /* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
- /* the transpose of the first three columns of AP upper. */
- /* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
- /* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
- /* the transpose of the last three columns of AP lower. */
- /* This covers the case N even and TRANSR = 'N'. */
- /* RFP A RFP A */
- /* 03 04 05 33 43 53 */
- /* 13 14 15 00 44 54 */
- /* 23 24 25 10 11 55 */
- /* 33 34 35 20 21 22 */
- /* 00 44 45 30 31 32 */
- /* 01 11 55 40 41 42 */
- /* 02 12 22 50 51 52 */
- /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
- /* transpose of RFP A above. One therefore gets: */
- /* RFP A RFP A */
- /* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
- /* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
- /* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
- /* We first consider Rectangular Full Packed (RFP) Format when N is */
- /* odd. We give an example where N = 5. */
- /* AP is Upper AP is Lower */
- /* 00 01 02 03 04 00 */
- /* 11 12 13 14 10 11 */
- /* 22 23 24 20 21 22 */
- /* 33 34 30 31 32 33 */
- /* 44 40 41 42 43 44 */
- /* Let TRANSR = 'N'. RFP holds AP as follows: */
- /* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
- /* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
- /* the transpose of the first two columns of AP upper. */
- /* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
- /* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
- /* the transpose of the last two columns of AP lower. */
- /* This covers the case N odd and TRANSR = 'N'. */
- /* RFP A RFP A */
- /* 02 03 04 00 33 43 */
- /* 12 13 14 10 11 44 */
- /* 22 23 24 20 21 22 */
- /* 00 33 34 30 31 32 */
- /* 01 11 44 40 41 42 */
- /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
- /* transpose of RFP A above. One therefore gets: */
- /* RFP A RFP A */
- /* 02 12 22 00 01 00 10 20 30 40 50 */
- /* 03 13 23 33 11 33 11 21 31 41 51 */
- /* 04 14 24 34 44 43 44 22 32 42 52 */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- *info = 0;
- normaltransr = _starpu_lsame_(transr, "N");
- lower = _starpu_lsame_(uplo, "L");
- if (! normaltransr && ! _starpu_lsame_(transr, "T")) {
- *info = -1;
- } else if (! lower && ! _starpu_lsame_(uplo, "U")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 0) {
- *info = -4;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPFTRS", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0 || *nrhs == 0) {
- return 0;
- }
- /* start execution: there are two triangular solves */
- if (lower) {
- _starpu_dtfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b10, a, &b[b_offset],
- ldb);
- _starpu_dtfsm_(transr, "L", uplo, "T", "N", n, nrhs, &c_b10, a, &b[b_offset],
- ldb);
- } else {
- _starpu_dtfsm_(transr, "L", uplo, "T", "N", n, nrhs, &c_b10, a, &b[b_offset],
- ldb);
- _starpu_dtfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b10, a, &b[b_offset],
- ldb);
- }
- return 0;
- /* End of DPFTRS */
- } /* _starpu_dpftrs_ */
|