123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 |
- /* dpftri.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b11 = 1.;
- /* Subroutine */ int _starpu_dpftri_(char *transr, char *uplo, integer *n, doublereal
- *a, integer *info)
- {
- /* System generated locals */
- integer i__1, i__2;
- /* Local variables */
- integer k, n1, n2;
- logical normaltransr;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *);
- logical lower;
- extern /* Subroutine */ int _starpu_dsyrk_(char *, char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- integer *), _starpu_xerbla_(char *, integer *);
- logical nisodd;
- extern /* Subroutine */ int _starpu_dlauum_(char *, integer *, doublereal *,
- integer *, integer *), _starpu_dtftri_(char *, char *, char *,
- integer *, doublereal *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
- /* -- November 2008 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* .. Scalar Arguments .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPFTRI computes the inverse of a (real) symmetric positive definite */
- /* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */
- /* computed by DPFTRF. */
- /* Arguments */
- /* ========= */
- /* TRANSR (input) CHARACTER */
- /* = 'N': The Normal TRANSR of RFP A is stored; */
- /* = 'T': The Transpose TRANSR of RFP A is stored. */
- /* UPLO (input) CHARACTER */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ) */
- /* On entry, the symmetric matrix A in RFP format. RFP format is */
- /* described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
- /* then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
- /* (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is */
- /* the transpose of RFP A as defined when */
- /* TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
- /* follows: If UPLO = 'U' the RFP A contains the nt elements of */
- /* upper packed A. If UPLO = 'L' the RFP A contains the elements */
- /* of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = */
- /* 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N */
- /* is odd. See the Note below for more details. */
- /* On exit, the symmetric inverse of the original matrix, in the */
- /* same storage format. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, the (i,i) element of the factor U or L is */
- /* zero, and the inverse could not be computed. */
- /* Notes */
- /* ===== */
- /* We first consider Rectangular Full Packed (RFP) Format when N is */
- /* even. We give an example where N = 6. */
- /* AP is Upper AP is Lower */
- /* 00 01 02 03 04 05 00 */
- /* 11 12 13 14 15 10 11 */
- /* 22 23 24 25 20 21 22 */
- /* 33 34 35 30 31 32 33 */
- /* 44 45 40 41 42 43 44 */
- /* 55 50 51 52 53 54 55 */
- /* Let TRANSR = 'N'. RFP holds AP as follows: */
- /* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
- /* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
- /* the transpose of the first three columns of AP upper. */
- /* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
- /* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
- /* the transpose of the last three columns of AP lower. */
- /* This covers the case N even and TRANSR = 'N'. */
- /* RFP A RFP A */
- /* 03 04 05 33 43 53 */
- /* 13 14 15 00 44 54 */
- /* 23 24 25 10 11 55 */
- /* 33 34 35 20 21 22 */
- /* 00 44 45 30 31 32 */
- /* 01 11 55 40 41 42 */
- /* 02 12 22 50 51 52 */
- /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
- /* transpose of RFP A above. One therefore gets: */
- /* RFP A RFP A */
- /* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
- /* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
- /* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
- /* We first consider Rectangular Full Packed (RFP) Format when N is */
- /* odd. We give an example where N = 5. */
- /* AP is Upper AP is Lower */
- /* 00 01 02 03 04 00 */
- /* 11 12 13 14 10 11 */
- /* 22 23 24 20 21 22 */
- /* 33 34 30 31 32 33 */
- /* 44 40 41 42 43 44 */
- /* Let TRANSR = 'N'. RFP holds AP as follows: */
- /* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
- /* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
- /* the transpose of the first two columns of AP upper. */
- /* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
- /* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
- /* the transpose of the last two columns of AP lower. */
- /* This covers the case N odd and TRANSR = 'N'. */
- /* RFP A RFP A */
- /* 02 03 04 00 33 43 */
- /* 12 13 14 10 11 44 */
- /* 22 23 24 20 21 22 */
- /* 00 33 34 30 31 32 */
- /* 01 11 44 40 41 42 */
- /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
- /* transpose of RFP A above. One therefore gets: */
- /* RFP A RFP A */
- /* 02 12 22 00 01 00 10 20 30 40 50 */
- /* 03 13 23 33 11 33 11 21 31 41 51 */
- /* 04 14 24 34 44 43 44 22 32 42 52 */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- *info = 0;
- normaltransr = _starpu_lsame_(transr, "N");
- lower = _starpu_lsame_(uplo, "L");
- if (! normaltransr && ! _starpu_lsame_(transr, "T")) {
- *info = -1;
- } else if (! lower && ! _starpu_lsame_(uplo, "U")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPFTRI", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Invert the triangular Cholesky factor U or L. */
- _starpu_dtftri_(transr, uplo, "N", n, a, info);
- if (*info > 0) {
- return 0;
- }
- /* If N is odd, set NISODD = .TRUE. */
- /* If N is even, set K = N/2 and NISODD = .FALSE. */
- if (*n % 2 == 0) {
- k = *n / 2;
- nisodd = FALSE_;
- } else {
- nisodd = TRUE_;
- }
- /* Set N1 and N2 depending on LOWER */
- if (lower) {
- n2 = *n / 2;
- n1 = *n - n2;
- } else {
- n1 = *n / 2;
- n2 = *n - n1;
- }
- /* Start execution of triangular matrix multiply: inv(U)*inv(U)^C or */
- /* inv(L)^C*inv(L). There are eight cases. */
- if (nisodd) {
- /* N is odd */
- if (normaltransr) {
- /* N is odd and TRANSR = 'N' */
- if (lower) {
- /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) ) */
- /* T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0) */
- /* T1 -> a(0), T2 -> a(n), S -> a(N1) */
- _starpu_dlauum_("L", &n1, a, n, info);
- _starpu_dsyrk_("L", "T", &n1, &n2, &c_b11, &a[n1], n, &c_b11, a, n);
- _starpu_dtrmm_("L", "U", "N", "N", &n2, &n1, &c_b11, &a[*n], n, &a[n1]
- , n);
- _starpu_dlauum_("U", &n2, &a[*n], n, info);
- } else {
- /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1) */
- /* T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0) */
- /* T1 -> a(N2), T2 -> a(N1), S -> a(0) */
- _starpu_dlauum_("L", &n1, &a[n2], n, info);
- _starpu_dsyrk_("L", "N", &n1, &n2, &c_b11, a, n, &c_b11, &a[n2], n);
- _starpu_dtrmm_("R", "U", "T", "N", &n1, &n2, &c_b11, &a[n1], n, a, n);
- _starpu_dlauum_("U", &n2, &a[n1], n, info);
- }
- } else {
- /* N is odd and TRANSR = 'T' */
- if (lower) {
- /* SRPA for LOWER, TRANSPOSE, and N is odd */
- /* T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1) */
- _starpu_dlauum_("U", &n1, a, &n1, info);
- _starpu_dsyrk_("U", "N", &n1, &n2, &c_b11, &a[n1 * n1], &n1, &c_b11,
- a, &n1);
- _starpu_dtrmm_("R", "L", "N", "N", &n1, &n2, &c_b11, &a[1], &n1, &a[
- n1 * n1], &n1);
- _starpu_dlauum_("L", &n2, &a[1], &n1, info);
- } else {
- /* SRPA for UPPER, TRANSPOSE, and N is odd */
- /* T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0) */
- _starpu_dlauum_("U", &n1, &a[n2 * n2], &n2, info);
- _starpu_dsyrk_("U", "T", &n1, &n2, &c_b11, a, &n2, &c_b11, &a[n2 * n2]
- , &n2);
- _starpu_dtrmm_("L", "L", "T", "N", &n2, &n1, &c_b11, &a[n1 * n2], &n2,
- a, &n2);
- _starpu_dlauum_("L", &n2, &a[n1 * n2], &n2, info);
- }
- }
- } else {
- /* N is even */
- if (normaltransr) {
- /* N is even and TRANSR = 'N' */
- if (lower) {
- /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
- /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
- /* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
- i__1 = *n + 1;
- _starpu_dlauum_("L", &k, &a[1], &i__1, info);
- i__1 = *n + 1;
- i__2 = *n + 1;
- _starpu_dsyrk_("L", "T", &k, &k, &c_b11, &a[k + 1], &i__1, &c_b11, &a[
- 1], &i__2);
- i__1 = *n + 1;
- i__2 = *n + 1;
- _starpu_dtrmm_("L", "U", "N", "N", &k, &k, &c_b11, a, &i__1, &a[k + 1]
- , &i__2);
- i__1 = *n + 1;
- _starpu_dlauum_("U", &k, a, &i__1, info);
- } else {
- /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
- /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
- /* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
- i__1 = *n + 1;
- _starpu_dlauum_("L", &k, &a[k + 1], &i__1, info);
- i__1 = *n + 1;
- i__2 = *n + 1;
- _starpu_dsyrk_("L", "N", &k, &k, &c_b11, a, &i__1, &c_b11, &a[k + 1],
- &i__2);
- i__1 = *n + 1;
- i__2 = *n + 1;
- _starpu_dtrmm_("R", "U", "T", "N", &k, &k, &c_b11, &a[k], &i__1, a, &
- i__2);
- i__1 = *n + 1;
- _starpu_dlauum_("U", &k, &a[k], &i__1, info);
- }
- } else {
- /* N is even and TRANSR = 'T' */
- if (lower) {
- /* SRPA for LOWER, TRANSPOSE, and N is even (see paper) */
- /* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1), */
- /* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
- _starpu_dlauum_("U", &k, &a[k], &k, info);
- _starpu_dsyrk_("U", "N", &k, &k, &c_b11, &a[k * (k + 1)], &k, &c_b11,
- &a[k], &k);
- _starpu_dtrmm_("R", "L", "N", "N", &k, &k, &c_b11, a, &k, &a[k * (k +
- 1)], &k);
- _starpu_dlauum_("L", &k, a, &k, info);
- } else {
- /* SRPA for UPPER, TRANSPOSE, and N is even (see paper) */
- /* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0), */
- /* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
- _starpu_dlauum_("U", &k, &a[k * (k + 1)], &k, info);
- _starpu_dsyrk_("U", "T", &k, &k, &c_b11, a, &k, &c_b11, &a[k * (k + 1)
- ], &k);
- _starpu_dtrmm_("L", "L", "T", "N", &k, &k, &c_b11, &a[k * k], &k, a, &
- k);
- _starpu_dlauum_("L", &k, &a[k * k], &k, info);
- }
- }
- }
- return 0;
- /* End of DPFTRI */
- } /* _starpu_dpftri_ */
|