dpftrf.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. /* dpftrf.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static doublereal c_b12 = 1.;
  15. static doublereal c_b15 = -1.;
  16. /* Subroutine */ int _starpu_dpftrf_(char *transr, char *uplo, integer *n, doublereal
  17. *a, integer *info)
  18. {
  19. /* System generated locals */
  20. integer i__1, i__2;
  21. /* Local variables */
  22. integer k, n1, n2;
  23. logical normaltransr;
  24. extern logical _starpu_lsame_(char *, char *);
  25. logical lower;
  26. extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *,
  27. integer *, integer *, doublereal *, doublereal *, integer *,
  28. doublereal *, integer *), _starpu_dsyrk_(
  29. char *, char *, integer *, integer *, doublereal *, doublereal *,
  30. integer *, doublereal *, doublereal *, integer *),
  31. _starpu_xerbla_(char *, integer *);
  32. logical nisodd;
  33. extern /* Subroutine */ int _starpu_dpotrf_(char *, integer *, doublereal *,
  34. integer *, integer *);
  35. /* -- LAPACK routine (version 3.2) -- */
  36. /* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
  37. /* -- November 2008 -- */
  38. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  39. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  40. /* .. */
  41. /* .. Scalar Arguments .. */
  42. /* .. */
  43. /* .. Array Arguments .. */
  44. /* Purpose */
  45. /* ======= */
  46. /* DPFTRF computes the Cholesky factorization of a real symmetric */
  47. /* positive definite matrix A. */
  48. /* The factorization has the form */
  49. /* A = U**T * U, if UPLO = 'U', or */
  50. /* A = L * L**T, if UPLO = 'L', */
  51. /* where U is an upper triangular matrix and L is lower triangular. */
  52. /* This is the block version of the algorithm, calling Level 3 BLAS. */
  53. /* Arguments */
  54. /* ========= */
  55. /* TRANSR (input) CHARACTER */
  56. /* = 'N': The Normal TRANSR of RFP A is stored; */
  57. /* = 'T': The Transpose TRANSR of RFP A is stored. */
  58. /* UPLO (input) CHARACTER */
  59. /* = 'U': Upper triangle of RFP A is stored; */
  60. /* = 'L': Lower triangle of RFP A is stored. */
  61. /* N (input) INTEGER */
  62. /* The order of the matrix A. N >= 0. */
  63. /* A (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ); */
  64. /* On entry, the symmetric matrix A in RFP format. RFP format is */
  65. /* described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
  66. /* then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
  67. /* (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is */
  68. /* the transpose of RFP A as defined when */
  69. /* TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
  70. /* follows: If UPLO = 'U' the RFP A contains the NT elements of */
  71. /* upper packed A. If UPLO = 'L' the RFP A contains the elements */
  72. /* of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = */
  73. /* 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N */
  74. /* is odd. See the Note below for more details. */
  75. /* On exit, if INFO = 0, the factor U or L from the Cholesky */
  76. /* factorization RFP A = U**T*U or RFP A = L*L**T. */
  77. /* INFO (output) INTEGER */
  78. /* = 0: successful exit */
  79. /* < 0: if INFO = -i, the i-th argument had an illegal value */
  80. /* > 0: if INFO = i, the leading minor of order i is not */
  81. /* positive definite, and the factorization could not be */
  82. /* completed. */
  83. /* Notes */
  84. /* ===== */
  85. /* We first consider Rectangular Full Packed (RFP) Format when N is */
  86. /* even. We give an example where N = 6. */
  87. /* AP is Upper AP is Lower */
  88. /* 00 01 02 03 04 05 00 */
  89. /* 11 12 13 14 15 10 11 */
  90. /* 22 23 24 25 20 21 22 */
  91. /* 33 34 35 30 31 32 33 */
  92. /* 44 45 40 41 42 43 44 */
  93. /* 55 50 51 52 53 54 55 */
  94. /* Let TRANSR = 'N'. RFP holds AP as follows: */
  95. /* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
  96. /* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
  97. /* the transpose of the first three columns of AP upper. */
  98. /* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
  99. /* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
  100. /* the transpose of the last three columns of AP lower. */
  101. /* This covers the case N even and TRANSR = 'N'. */
  102. /* RFP A RFP A */
  103. /* 03 04 05 33 43 53 */
  104. /* 13 14 15 00 44 54 */
  105. /* 23 24 25 10 11 55 */
  106. /* 33 34 35 20 21 22 */
  107. /* 00 44 45 30 31 32 */
  108. /* 01 11 55 40 41 42 */
  109. /* 02 12 22 50 51 52 */
  110. /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  111. /* transpose of RFP A above. One therefore gets: */
  112. /* RFP A RFP A */
  113. /* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
  114. /* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
  115. /* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
  116. /* We first consider Rectangular Full Packed (RFP) Format when N is */
  117. /* odd. We give an example where N = 5. */
  118. /* AP is Upper AP is Lower */
  119. /* 00 01 02 03 04 00 */
  120. /* 11 12 13 14 10 11 */
  121. /* 22 23 24 20 21 22 */
  122. /* 33 34 30 31 32 33 */
  123. /* 44 40 41 42 43 44 */
  124. /* Let TRANSR = 'N'. RFP holds AP as follows: */
  125. /* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
  126. /* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
  127. /* the transpose of the first two columns of AP upper. */
  128. /* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
  129. /* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
  130. /* the transpose of the last two columns of AP lower. */
  131. /* This covers the case N odd and TRANSR = 'N'. */
  132. /* RFP A RFP A */
  133. /* 02 03 04 00 33 43 */
  134. /* 12 13 14 10 11 44 */
  135. /* 22 23 24 20 21 22 */
  136. /* 00 33 34 30 31 32 */
  137. /* 01 11 44 40 41 42 */
  138. /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  139. /* transpose of RFP A above. One therefore gets: */
  140. /* RFP A RFP A */
  141. /* 02 12 22 00 01 00 10 20 30 40 50 */
  142. /* 03 13 23 33 11 33 11 21 31 41 51 */
  143. /* 04 14 24 34 44 43 44 22 32 42 52 */
  144. /* ===================================================================== */
  145. /* .. Parameters .. */
  146. /* .. */
  147. /* .. Local Scalars .. */
  148. /* .. */
  149. /* .. External Functions .. */
  150. /* .. */
  151. /* .. External Subroutines .. */
  152. /* .. */
  153. /* .. Intrinsic Functions .. */
  154. /* .. */
  155. /* .. Executable Statements .. */
  156. /* Test the input parameters. */
  157. *info = 0;
  158. normaltransr = _starpu_lsame_(transr, "N");
  159. lower = _starpu_lsame_(uplo, "L");
  160. if (! normaltransr && ! _starpu_lsame_(transr, "T")) {
  161. *info = -1;
  162. } else if (! lower && ! _starpu_lsame_(uplo, "U")) {
  163. *info = -2;
  164. } else if (*n < 0) {
  165. *info = -3;
  166. }
  167. if (*info != 0) {
  168. i__1 = -(*info);
  169. _starpu_xerbla_("DPFTRF", &i__1);
  170. return 0;
  171. }
  172. /* Quick return if possible */
  173. if (*n == 0) {
  174. return 0;
  175. }
  176. /* If N is odd, set NISODD = .TRUE. */
  177. /* If N is even, set K = N/2 and NISODD = .FALSE. */
  178. if (*n % 2 == 0) {
  179. k = *n / 2;
  180. nisodd = FALSE_;
  181. } else {
  182. nisodd = TRUE_;
  183. }
  184. /* Set N1 and N2 depending on LOWER */
  185. if (lower) {
  186. n2 = *n / 2;
  187. n1 = *n - n2;
  188. } else {
  189. n1 = *n / 2;
  190. n2 = *n - n1;
  191. }
  192. /* start execution: there are eight cases */
  193. if (nisodd) {
  194. /* N is odd */
  195. if (normaltransr) {
  196. /* N is odd and TRANSR = 'N' */
  197. if (lower) {
  198. /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
  199. /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
  200. /* T1 -> a(0), T2 -> a(n), S -> a(n1) */
  201. _starpu_dpotrf_("L", &n1, a, n, info);
  202. if (*info > 0) {
  203. return 0;
  204. }
  205. _starpu_dtrsm_("R", "L", "T", "N", &n2, &n1, &c_b12, a, n, &a[n1], n);
  206. _starpu_dsyrk_("U", "N", &n2, &n1, &c_b15, &a[n1], n, &c_b12, &a[*n],
  207. n);
  208. _starpu_dpotrf_("U", &n2, &a[*n], n, info);
  209. if (*info > 0) {
  210. *info += n1;
  211. }
  212. } else {
  213. /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
  214. /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
  215. /* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
  216. _starpu_dpotrf_("L", &n1, &a[n2], n, info);
  217. if (*info > 0) {
  218. return 0;
  219. }
  220. _starpu_dtrsm_("L", "L", "N", "N", &n1, &n2, &c_b12, &a[n2], n, a, n);
  221. _starpu_dsyrk_("U", "T", &n2, &n1, &c_b15, a, n, &c_b12, &a[n1], n);
  222. _starpu_dpotrf_("U", &n2, &a[n1], n, info);
  223. if (*info > 0) {
  224. *info += n1;
  225. }
  226. }
  227. } else {
  228. /* N is odd and TRANSR = 'T' */
  229. if (lower) {
  230. /* SRPA for LOWER, TRANSPOSE and N is odd */
  231. /* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
  232. /* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */
  233. _starpu_dpotrf_("U", &n1, a, &n1, info);
  234. if (*info > 0) {
  235. return 0;
  236. }
  237. _starpu_dtrsm_("L", "U", "T", "N", &n1, &n2, &c_b12, a, &n1, &a[n1 *
  238. n1], &n1);
  239. _starpu_dsyrk_("L", "T", &n2, &n1, &c_b15, &a[n1 * n1], &n1, &c_b12, &
  240. a[1], &n1);
  241. _starpu_dpotrf_("L", &n2, &a[1], &n1, info);
  242. if (*info > 0) {
  243. *info += n1;
  244. }
  245. } else {
  246. /* SRPA for UPPER, TRANSPOSE and N is odd */
  247. /* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
  248. /* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */
  249. _starpu_dpotrf_("U", &n1, &a[n2 * n2], &n2, info);
  250. if (*info > 0) {
  251. return 0;
  252. }
  253. _starpu_dtrsm_("R", "U", "N", "N", &n2, &n1, &c_b12, &a[n2 * n2], &n2,
  254. a, &n2);
  255. _starpu_dsyrk_("L", "N", &n2, &n1, &c_b15, a, &n2, &c_b12, &a[n1 * n2]
  256. , &n2);
  257. _starpu_dpotrf_("L", &n2, &a[n1 * n2], &n2, info);
  258. if (*info > 0) {
  259. *info += n1;
  260. }
  261. }
  262. }
  263. } else {
  264. /* N is even */
  265. if (normaltransr) {
  266. /* N is even and TRANSR = 'N' */
  267. if (lower) {
  268. /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  269. /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
  270. /* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
  271. i__1 = *n + 1;
  272. _starpu_dpotrf_("L", &k, &a[1], &i__1, info);
  273. if (*info > 0) {
  274. return 0;
  275. }
  276. i__1 = *n + 1;
  277. i__2 = *n + 1;
  278. _starpu_dtrsm_("R", "L", "T", "N", &k, &k, &c_b12, &a[1], &i__1, &a[k
  279. + 1], &i__2);
  280. i__1 = *n + 1;
  281. i__2 = *n + 1;
  282. _starpu_dsyrk_("U", "N", &k, &k, &c_b15, &a[k + 1], &i__1, &c_b12, a,
  283. &i__2);
  284. i__1 = *n + 1;
  285. _starpu_dpotrf_("U", &k, a, &i__1, info);
  286. if (*info > 0) {
  287. *info += k;
  288. }
  289. } else {
  290. /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  291. /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
  292. /* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
  293. i__1 = *n + 1;
  294. _starpu_dpotrf_("L", &k, &a[k + 1], &i__1, info);
  295. if (*info > 0) {
  296. return 0;
  297. }
  298. i__1 = *n + 1;
  299. i__2 = *n + 1;
  300. _starpu_dtrsm_("L", "L", "N", "N", &k, &k, &c_b12, &a[k + 1], &i__1,
  301. a, &i__2);
  302. i__1 = *n + 1;
  303. i__2 = *n + 1;
  304. _starpu_dsyrk_("U", "T", &k, &k, &c_b15, a, &i__1, &c_b12, &a[k], &
  305. i__2);
  306. i__1 = *n + 1;
  307. _starpu_dpotrf_("U", &k, &a[k], &i__1, info);
  308. if (*info > 0) {
  309. *info += k;
  310. }
  311. }
  312. } else {
  313. /* N is even and TRANSR = 'T' */
  314. if (lower) {
  315. /* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
  316. /* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
  317. /* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
  318. _starpu_dpotrf_("U", &k, &a[k], &k, info);
  319. if (*info > 0) {
  320. return 0;
  321. }
  322. _starpu_dtrsm_("L", "U", "T", "N", &k, &k, &c_b12, &a[k], &n1, &a[k *
  323. (k + 1)], &k);
  324. _starpu_dsyrk_("L", "T", &k, &k, &c_b15, &a[k * (k + 1)], &k, &c_b12,
  325. a, &k);
  326. _starpu_dpotrf_("L", &k, a, &k, info);
  327. if (*info > 0) {
  328. *info += k;
  329. }
  330. } else {
  331. /* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
  332. /* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
  333. /* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
  334. _starpu_dpotrf_("U", &k, &a[k * (k + 1)], &k, info);
  335. if (*info > 0) {
  336. return 0;
  337. }
  338. _starpu_dtrsm_("R", "U", "N", "N", &k, &k, &c_b12, &a[k * (k + 1)], &
  339. k, a, &k);
  340. _starpu_dsyrk_("L", "N", &k, &k, &c_b15, a, &k, &c_b12, &a[k * k], &k);
  341. _starpu_dpotrf_("L", &k, &a[k * k], &k, info);
  342. if (*info > 0) {
  343. *info += k;
  344. }
  345. }
  346. }
  347. }
  348. return 0;
  349. /* End of DPFTRF */
  350. } /* _starpu_dpftrf_ */