123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- /* dpbtrf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static doublereal c_b18 = 1.;
- static doublereal c_b21 = -1.;
- static integer c__33 = 33;
- /* Subroutine */ int _starpu_dpbtrf_(char *uplo, integer *n, integer *kd, doublereal *
- ab, integer *ldab, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
- /* Local variables */
- integer i__, j, i2, i3, ib, nb, ii, jj;
- doublereal work[1056] /* was [33][32] */;
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dsyrk_(
- char *, char *, integer *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, doublereal *, integer *),
- _starpu_dpbtf2_(char *, integer *, integer *, doublereal *, integer *,
- integer *), _starpu_dpotf2_(char *, integer *, doublereal *,
- integer *, integer *), _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPBTRF computes the Cholesky factorization of a real symmetric */
- /* positive definite band matrix A. */
- /* The factorization has the form */
- /* A = U**T * U, if UPLO = 'U', or */
- /* A = L * L**T, if UPLO = 'L', */
- /* where U is an upper triangular matrix and L is lower triangular. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* KD (input) INTEGER */
- /* The number of superdiagonals of the matrix A if UPLO = 'U', */
- /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
- /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* On entry, the upper or lower triangle of the symmetric band */
- /* matrix A, stored in the first KD+1 rows of the array. The */
- /* j-th column of A is stored in the j-th column of the array AB */
- /* as follows: */
- /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
- /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
- /* On exit, if INFO = 0, the triangular factor U or L from the */
- /* Cholesky factorization A = U**T*U or A = L*L**T of the band */
- /* matrix A, in the same storage format as A. */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array AB. LDAB >= KD+1. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, the leading minor of order i is not */
- /* positive definite, and the factorization could not be */
- /* completed. */
- /* Further Details */
- /* =============== */
- /* The band storage scheme is illustrated by the following example, when */
- /* N = 6, KD = 2, and UPLO = 'U': */
- /* On entry: On exit: */
- /* * * a13 a24 a35 a46 * * u13 u24 u35 u46 */
- /* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
- /* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
- /* Similarly, if UPLO = 'L' the format of A is as follows: */
- /* On entry: On exit: */
- /* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */
- /* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */
- /* a31 a42 a53 a64 * * l31 l42 l53 l64 * * */
- /* Array elements marked * are not used by the routine. */
- /* Contributed by */
- /* Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- /* Function Body */
- *info = 0;
- if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*kd < 0) {
- *info = -3;
- } else if (*ldab < *kd + 1) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPBTRF", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Determine the block size for this environment */
- nb = _starpu_ilaenv_(&c__1, "DPBTRF", uplo, n, kd, &c_n1, &c_n1);
- /* The block size must not exceed the semi-bandwidth KD, and must not */
- /* exceed the limit set by the size of the local array WORK. */
- nb = min(nb,32);
- if (nb <= 1 || nb > *kd) {
- /* Use unblocked code */
- _starpu_dpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
- } else {
- /* Use blocked code */
- if (_starpu_lsame_(uplo, "U")) {
- /* Compute the Cholesky factorization of a symmetric band */
- /* matrix, given the upper triangle of the matrix in band */
- /* storage. */
- /* Zero the upper triangle of the work array. */
- i__1 = nb;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * 33 - 34] = 0.;
- /* L10: */
- }
- /* L20: */
- }
- /* Process the band matrix one diagonal block at a time. */
- i__1 = *n;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- /* Computing MIN */
- i__3 = nb, i__4 = *n - i__ + 1;
- ib = min(i__3,i__4);
- /* Factorize the diagonal block */
- i__3 = *ldab - 1;
- _starpu_dpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii);
- if (ii != 0) {
- *info = i__ + ii - 1;
- goto L150;
- }
- if (i__ + ib <= *n) {
- /* Update the relevant part of the trailing submatrix. */
- /* If A11 denotes the diagonal block which has just been */
- /* factorized, then we need to update the remaining */
- /* blocks in the diagram: */
- /* A11 A12 A13 */
- /* A22 A23 */
- /* A33 */
- /* The numbers of rows and columns in the partitioning */
- /* are IB, I2, I3 respectively. The blocks A12, A22 and */
- /* A23 are empty if IB = KD. The upper triangle of A13 */
- /* lies outside the band. */
- /* Computing MIN */
- i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
- i2 = min(i__3,i__4);
- /* Computing MIN */
- i__3 = ib, i__4 = *n - i__ - *kd + 1;
- i3 = min(i__3,i__4);
- if (i2 > 0) {
- /* Update A12 */
- i__3 = *ldab - 1;
- i__4 = *ldab - 1;
- _starpu_dtrsm_("Left", "Upper", "Transpose", "Non-unit", &ib,
- &i2, &c_b18, &ab[*kd + 1 + i__ * ab_dim1], &
- i__3, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1]
- , &i__4);
- /* Update A22 */
- i__3 = *ldab - 1;
- i__4 = *ldab - 1;
- _starpu_dsyrk_("Upper", "Transpose", &i2, &ib, &c_b21, &ab[*
- kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, &
- c_b18, &ab[*kd + 1 + (i__ + ib) * ab_dim1], &
- i__4);
- }
- if (i3 > 0) {
- /* Copy the lower triangle of A13 into the work array. */
- i__3 = i3;
- for (jj = 1; jj <= i__3; ++jj) {
- i__4 = ib;
- for (ii = jj; ii <= i__4; ++ii) {
- work[ii + jj * 33 - 34] = ab[ii - jj + 1 + (
- jj + i__ + *kd - 1) * ab_dim1];
- /* L30: */
- }
- /* L40: */
- }
- /* Update A13 (in the work array). */
- i__3 = *ldab - 1;
- _starpu_dtrsm_("Left", "Upper", "Transpose", "Non-unit", &ib,
- &i3, &c_b18, &ab[*kd + 1 + i__ * ab_dim1], &
- i__3, work, &c__33);
- /* Update A23 */
- if (i2 > 0) {
- i__3 = *ldab - 1;
- i__4 = *ldab - 1;
- _starpu_dgemm_("Transpose", "No Transpose", &i2, &i3, &ib,
- &c_b21, &ab[*kd + 1 - ib + (i__ + ib) *
- ab_dim1], &i__3, work, &c__33, &c_b18, &
- ab[ib + 1 + (i__ + *kd) * ab_dim1], &i__4);
- }
- /* Update A33 */
- i__3 = *ldab - 1;
- _starpu_dsyrk_("Upper", "Transpose", &i3, &ib, &c_b21, work, &
- c__33, &c_b18, &ab[*kd + 1 + (i__ + *kd) *
- ab_dim1], &i__3);
- /* Copy the lower triangle of A13 back into place. */
- i__3 = i3;
- for (jj = 1; jj <= i__3; ++jj) {
- i__4 = ib;
- for (ii = jj; ii <= i__4; ++ii) {
- ab[ii - jj + 1 + (jj + i__ + *kd - 1) *
- ab_dim1] = work[ii + jj * 33 - 34];
- /* L50: */
- }
- /* L60: */
- }
- }
- }
- /* L70: */
- }
- } else {
- /* Compute the Cholesky factorization of a symmetric band */
- /* matrix, given the lower triangle of the matrix in band */
- /* storage. */
- /* Zero the lower triangle of the work array. */
- i__2 = nb;
- for (j = 1; j <= i__2; ++j) {
- i__1 = nb;
- for (i__ = j + 1; i__ <= i__1; ++i__) {
- work[i__ + j * 33 - 34] = 0.;
- /* L80: */
- }
- /* L90: */
- }
- /* Process the band matrix one diagonal block at a time. */
- i__2 = *n;
- i__1 = nb;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
- /* Computing MIN */
- i__3 = nb, i__4 = *n - i__ + 1;
- ib = min(i__3,i__4);
- /* Factorize the diagonal block */
- i__3 = *ldab - 1;
- _starpu_dpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii);
- if (ii != 0) {
- *info = i__ + ii - 1;
- goto L150;
- }
- if (i__ + ib <= *n) {
- /* Update the relevant part of the trailing submatrix. */
- /* If A11 denotes the diagonal block which has just been */
- /* factorized, then we need to update the remaining */
- /* blocks in the diagram: */
- /* A11 */
- /* A21 A22 */
- /* A31 A32 A33 */
- /* The numbers of rows and columns in the partitioning */
- /* are IB, I2, I3 respectively. The blocks A21, A22 and */
- /* A32 are empty if IB = KD. The lower triangle of A31 */
- /* lies outside the band. */
- /* Computing MIN */
- i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
- i2 = min(i__3,i__4);
- /* Computing MIN */
- i__3 = ib, i__4 = *n - i__ - *kd + 1;
- i3 = min(i__3,i__4);
- if (i2 > 0) {
- /* Update A21 */
- i__3 = *ldab - 1;
- i__4 = *ldab - 1;
- _starpu_dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i2,
- &ib, &c_b18, &ab[i__ * ab_dim1 + 1], &i__3, &
- ab[ib + 1 + i__ * ab_dim1], &i__4);
- /* Update A22 */
- i__3 = *ldab - 1;
- i__4 = *ldab - 1;
- _starpu_dsyrk_("Lower", "No Transpose", &i2, &ib, &c_b21, &ab[
- ib + 1 + i__ * ab_dim1], &i__3, &c_b18, &ab[(
- i__ + ib) * ab_dim1 + 1], &i__4);
- }
- if (i3 > 0) {
- /* Copy the upper triangle of A31 into the work array. */
- i__3 = ib;
- for (jj = 1; jj <= i__3; ++jj) {
- i__4 = min(jj,i3);
- for (ii = 1; ii <= i__4; ++ii) {
- work[ii + jj * 33 - 34] = ab[*kd + 1 - jj +
- ii + (jj + i__ - 1) * ab_dim1];
- /* L100: */
- }
- /* L110: */
- }
- /* Update A31 (in the work array). */
- i__3 = *ldab - 1;
- _starpu_dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i3,
- &ib, &c_b18, &ab[i__ * ab_dim1 + 1], &i__3,
- work, &c__33);
- /* Update A32 */
- if (i2 > 0) {
- i__3 = *ldab - 1;
- i__4 = *ldab - 1;
- _starpu_dgemm_("No transpose", "Transpose", &i3, &i2, &ib,
- &c_b21, work, &c__33, &ab[ib + 1 + i__ *
- ab_dim1], &i__3, &c_b18, &ab[*kd + 1 - ib
- + (i__ + ib) * ab_dim1], &i__4);
- }
- /* Update A33 */
- i__3 = *ldab - 1;
- _starpu_dsyrk_("Lower", "No Transpose", &i3, &ib, &c_b21,
- work, &c__33, &c_b18, &ab[(i__ + *kd) *
- ab_dim1 + 1], &i__3);
- /* Copy the upper triangle of A31 back into place. */
- i__3 = ib;
- for (jj = 1; jj <= i__3; ++jj) {
- i__4 = min(jj,i3);
- for (ii = 1; ii <= i__4; ++ii) {
- ab[*kd + 1 - jj + ii + (jj + i__ - 1) *
- ab_dim1] = work[ii + jj * 33 - 34];
- /* L120: */
- }
- /* L130: */
- }
- }
- }
- /* L140: */
- }
- }
- }
- return 0;
- L150:
- return 0;
- /* End of DPBTRF */
- } /* _starpu_dpbtrf_ */
|