123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516 |
- /* dpbsvx.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dpbsvx_(char *fact, char *uplo, integer *n, integer *kd,
- integer *nrhs, doublereal *ab, integer *ldab, doublereal *afb,
- integer *ldafb, char *equed, doublereal *s, doublereal *b, integer *
- ldb, doublereal *x, integer *ldx, doublereal *rcond, doublereal *ferr,
- doublereal *berr, doublereal *work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
- x_dim1, x_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Local variables */
- integer i__, j, j1, j2;
- doublereal amax, smin, smax;
- extern logical _starpu_lsame_(char *, char *);
- doublereal scond, anorm;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- logical equil, rcequ, upper;
- extern doublereal _starpu_dlamch_(char *), _starpu_dlansb_(char *, char *,
- integer *, integer *, doublereal *, integer *, doublereal *);
- extern /* Subroutine */ int _starpu_dpbcon_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *), _starpu_dlaqsb_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, char *);
- logical nofact;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *), _starpu_dpbequ_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, integer *);
- doublereal bignum;
- extern /* Subroutine */ int _starpu_dpbrfs_(char *, integer *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, integer *, integer *), _starpu_dpbtrf_(char *,
- integer *, integer *, doublereal *, integer *, integer *);
- integer infequ;
- extern /* Subroutine */ int _starpu_dpbtrs_(char *, integer *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *, integer *);
- doublereal smlnum;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to */
- /* compute the solution to a real system of linear equations */
- /* A * X = B, */
- /* where A is an N-by-N symmetric positive definite band matrix and X */
- /* and B are N-by-NRHS matrices. */
- /* Error bounds on the solution and a condition estimate are also */
- /* provided. */
- /* Description */
- /* =========== */
- /* The following steps are performed: */
- /* 1. If FACT = 'E', real scaling factors are computed to equilibrate */
- /* the system: */
- /* diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
- /* Whether or not the system will be equilibrated depends on the */
- /* scaling of the matrix A, but if equilibration is used, A is */
- /* overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
- /* 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
- /* factor the matrix A (after equilibration if FACT = 'E') as */
- /* A = U**T * U, if UPLO = 'U', or */
- /* A = L * L**T, if UPLO = 'L', */
- /* where U is an upper triangular band matrix, and L is a lower */
- /* triangular band matrix. */
- /* 3. If the leading i-by-i principal minor is not positive definite, */
- /* then the routine returns with INFO = i. Otherwise, the factored */
- /* form of A is used to estimate the condition number of the matrix */
- /* A. If the reciprocal of the condition number is less than machine */
- /* precision, INFO = N+1 is returned as a warning, but the routine */
- /* still goes on to solve for X and compute error bounds as */
- /* described below. */
- /* 4. The system of equations is solved for X using the factored form */
- /* of A. */
- /* 5. Iterative refinement is applied to improve the computed solution */
- /* matrix and calculate error bounds and backward error estimates */
- /* for it. */
- /* 6. If equilibration was used, the matrix X is premultiplied by */
- /* diag(S) so that it solves the original system before */
- /* equilibration. */
- /* Arguments */
- /* ========= */
- /* FACT (input) CHARACTER*1 */
- /* Specifies whether or not the factored form of the matrix A is */
- /* supplied on entry, and if not, whether the matrix A should be */
- /* equilibrated before it is factored. */
- /* = 'F': On entry, AFB contains the factored form of A. */
- /* If EQUED = 'Y', the matrix A has been equilibrated */
- /* with scaling factors given by S. AB and AFB will not */
- /* be modified. */
- /* = 'N': The matrix A will be copied to AFB and factored. */
- /* = 'E': The matrix A will be equilibrated if necessary, then */
- /* copied to AFB and factored. */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The number of linear equations, i.e., the order of the */
- /* matrix A. N >= 0. */
- /* KD (input) INTEGER */
- /* The number of superdiagonals of the matrix A if UPLO = 'U', */
- /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right-hand sides, i.e., the number of columns */
- /* of the matrices B and X. NRHS >= 0. */
- /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* On entry, the upper or lower triangle of the symmetric band */
- /* matrix A, stored in the first KD+1 rows of the array, except */
- /* if FACT = 'F' and EQUED = 'Y', then A must contain the */
- /* equilibrated matrix diag(S)*A*diag(S). The j-th column of A */
- /* is stored in the j-th column of the array AB as follows: */
- /* if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; */
- /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD). */
- /* See below for further details. */
- /* On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
- /* diag(S)*A*diag(S). */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array A. LDAB >= KD+1. */
- /* AFB (input or output) DOUBLE PRECISION array, dimension (LDAFB,N) */
- /* If FACT = 'F', then AFB is an input argument and on entry */
- /* contains the triangular factor U or L from the Cholesky */
- /* factorization A = U**T*U or A = L*L**T of the band matrix */
- /* A, in the same storage format as A (see AB). If EQUED = 'Y', */
- /* then AFB is the factored form of the equilibrated matrix A. */
- /* If FACT = 'N', then AFB is an output argument and on exit */
- /* returns the triangular factor U or L from the Cholesky */
- /* factorization A = U**T*U or A = L*L**T. */
- /* If FACT = 'E', then AFB is an output argument and on exit */
- /* returns the triangular factor U or L from the Cholesky */
- /* factorization A = U**T*U or A = L*L**T of the equilibrated */
- /* matrix A (see the description of A for the form of the */
- /* equilibrated matrix). */
- /* LDAFB (input) INTEGER */
- /* The leading dimension of the array AFB. LDAFB >= KD+1. */
- /* EQUED (input or output) CHARACTER*1 */
- /* Specifies the form of equilibration that was done. */
- /* = 'N': No equilibration (always true if FACT = 'N'). */
- /* = 'Y': Equilibration was done, i.e., A has been replaced by */
- /* diag(S) * A * diag(S). */
- /* EQUED is an input argument if FACT = 'F'; otherwise, it is an */
- /* output argument. */
- /* S (input or output) DOUBLE PRECISION array, dimension (N) */
- /* The scale factors for A; not accessed if EQUED = 'N'. S is */
- /* an input argument if FACT = 'F'; otherwise, S is an output */
- /* argument. If FACT = 'F' and EQUED = 'Y', each element of S */
- /* must be positive. */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the N-by-NRHS right hand side matrix B. */
- /* On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
- /* B is overwritten by diag(S) * B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
- /* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
- /* the original system of equations. Note that if EQUED = 'Y', */
- /* A and B are modified on exit, and the solution to the */
- /* equilibrated system is inv(diag(S))*X. */
- /* LDX (input) INTEGER */
- /* The leading dimension of the array X. LDX >= max(1,N). */
- /* RCOND (output) DOUBLE PRECISION */
- /* The estimate of the reciprocal condition number of the matrix */
- /* A after equilibration (if done). If RCOND is less than the */
- /* machine precision (in particular, if RCOND = 0), the matrix */
- /* is singular to working precision. This condition is */
- /* indicated by a return code of INFO > 0. */
- /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The estimated forward error bound for each solution vector */
- /* X(j) (the j-th column of the solution matrix X). */
- /* If XTRUE is the true solution corresponding to X(j), FERR(j) */
- /* is an estimated upper bound for the magnitude of the largest */
- /* element in (X(j) - XTRUE) divided by the magnitude of the */
- /* largest element in X(j). The estimate is as reliable as */
- /* the estimate for RCOND, and is almost always a slight */
- /* overestimate of the true error. */
- /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The componentwise relative backward error of each solution */
- /* vector X(j) (i.e., the smallest relative change in */
- /* any element of A or B that makes X(j) an exact solution). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */
- /* IWORK (workspace) INTEGER array, dimension (N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, and i is */
- /* <= N: the leading minor of order i of A is */
- /* not positive definite, so the factorization */
- /* could not be completed, and the solution has not */
- /* been computed. RCOND = 0 is returned. */
- /* = N+1: U is nonsingular, but RCOND is less than machine */
- /* precision, meaning that the matrix is singular */
- /* to working precision. Nevertheless, the */
- /* solution and error bounds are computed because */
- /* there are a number of situations where the */
- /* computed solution can be more accurate than the */
- /* value of RCOND would suggest. */
- /* Further Details */
- /* =============== */
- /* The band storage scheme is illustrated by the following example, when */
- /* N = 6, KD = 2, and UPLO = 'U': */
- /* Two-dimensional storage of the symmetric matrix A: */
- /* a11 a12 a13 */
- /* a22 a23 a24 */
- /* a33 a34 a35 */
- /* a44 a45 a46 */
- /* a55 a56 */
- /* (aij=conjg(aji)) a66 */
- /* Band storage of the upper triangle of A: */
- /* * * a13 a24 a35 a46 */
- /* * a12 a23 a34 a45 a56 */
- /* a11 a22 a33 a44 a55 a66 */
- /* Similarly, if UPLO = 'L' the format of A is as follows: */
- /* a11 a22 a33 a44 a55 a66 */
- /* a21 a32 a43 a54 a65 * */
- /* a31 a42 a53 a64 * * */
- /* Array elements marked * are not used by the routine. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- afb_dim1 = *ldafb;
- afb_offset = 1 + afb_dim1;
- afb -= afb_offset;
- --s;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1;
- x -= x_offset;
- --ferr;
- --berr;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- nofact = _starpu_lsame_(fact, "N");
- equil = _starpu_lsame_(fact, "E");
- upper = _starpu_lsame_(uplo, "U");
- if (nofact || equil) {
- *(unsigned char *)equed = 'N';
- rcequ = FALSE_;
- } else {
- rcequ = _starpu_lsame_(equed, "Y");
- smlnum = _starpu_dlamch_("Safe minimum");
- bignum = 1. / smlnum;
- }
- /* Test the input parameters. */
- if (! nofact && ! equil && ! _starpu_lsame_(fact, "F")) {
- *info = -1;
- } else if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*kd < 0) {
- *info = -4;
- } else if (*nrhs < 0) {
- *info = -5;
- } else if (*ldab < *kd + 1) {
- *info = -7;
- } else if (*ldafb < *kd + 1) {
- *info = -9;
- } else if (_starpu_lsame_(fact, "F") && ! (rcequ || _starpu_lsame_(
- equed, "N"))) {
- *info = -10;
- } else {
- if (rcequ) {
- smin = bignum;
- smax = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- d__1 = smin, d__2 = s[j];
- smin = min(d__1,d__2);
- /* Computing MAX */
- d__1 = smax, d__2 = s[j];
- smax = max(d__1,d__2);
- /* L10: */
- }
- if (smin <= 0.) {
- *info = -11;
- } else if (*n > 0) {
- scond = max(smin,smlnum) / min(smax,bignum);
- } else {
- scond = 1.;
- }
- }
- if (*info == 0) {
- if (*ldb < max(1,*n)) {
- *info = -13;
- } else if (*ldx < max(1,*n)) {
- *info = -15;
- }
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPBSVX", &i__1);
- return 0;
- }
- if (equil) {
- /* Compute row and column scalings to equilibrate the matrix A. */
- _starpu_dpbequ_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax, &
- infequ);
- if (infequ == 0) {
- /* Equilibrate the matrix. */
- _starpu_dlaqsb_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax,
- equed);
- rcequ = _starpu_lsame_(equed, "Y");
- }
- }
- /* Scale the right-hand side. */
- if (rcequ) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];
- /* L20: */
- }
- /* L30: */
- }
- }
- if (nofact || equil) {
- /* Compute the Cholesky factorization A = U'*U or A = L*L'. */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- i__2 = j - *kd;
- j1 = max(i__2,1);
- i__2 = j - j1 + 1;
- _starpu_dcopy_(&i__2, &ab[*kd + 1 - j + j1 + j * ab_dim1], &c__1, &
- afb[*kd + 1 - j + j1 + j * afb_dim1], &c__1);
- /* L40: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- i__2 = j + *kd;
- j2 = min(i__2,*n);
- i__2 = j2 - j + 1;
- _starpu_dcopy_(&i__2, &ab[j * ab_dim1 + 1], &c__1, &afb[j * afb_dim1
- + 1], &c__1);
- /* L50: */
- }
- }
- _starpu_dpbtrf_(uplo, n, kd, &afb[afb_offset], ldafb, info);
- /* Return if INFO is non-zero. */
- if (*info > 0) {
- *rcond = 0.;
- return 0;
- }
- }
- /* Compute the norm of the matrix A. */
- anorm = _starpu_dlansb_("1", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);
- /* Compute the reciprocal of the condition number of A. */
- _starpu_dpbcon_(uplo, n, kd, &afb[afb_offset], ldafb, &anorm, rcond, &work[1], &
- iwork[1], info);
- /* Compute the solution matrix X. */
- _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
- _starpu_dpbtrs_(uplo, n, kd, nrhs, &afb[afb_offset], ldafb, &x[x_offset], ldx,
- info);
- /* Use iterative refinement to improve the computed solution and */
- /* compute error bounds and backward error estimates for it. */
- _starpu_dpbrfs_(uplo, n, kd, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb,
- &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1]
- , &iwork[1], info);
- /* Transform the solution matrix X to a solution of the original */
- /* system. */
- if (rcequ) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];
- /* L60: */
- }
- /* L70: */
- }
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- ferr[j] /= scond;
- /* L80: */
- }
- }
- /* Set INFO = N+1 if the matrix is singular to working precision. */
- if (*rcond < _starpu_dlamch_("Epsilon")) {
- *info = *n + 1;
- }
- return 0;
- /* End of DPBSVX */
- } /* _starpu_dpbsvx_ */
|