123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- /* dpbequ.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dpbequ_(char *uplo, integer *n, integer *kd, doublereal *
- ab, integer *ldab, doublereal *s, doublereal *scond, doublereal *amax,
- integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, i__1;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j;
- doublereal smin;
- extern logical _starpu_lsame_(char *, char *);
- logical upper;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPBEQU computes row and column scalings intended to equilibrate a */
- /* symmetric positive definite band matrix A and reduce its condition */
- /* number (with respect to the two-norm). S contains the scale factors, */
- /* S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with */
- /* elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This */
- /* choice of S puts the condition number of B within a factor N of the */
- /* smallest possible condition number over all possible diagonal */
- /* scalings. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangular of A is stored; */
- /* = 'L': Lower triangular of A is stored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* KD (input) INTEGER */
- /* The number of superdiagonals of the matrix A if UPLO = 'U', */
- /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
- /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* The upper or lower triangle of the symmetric band matrix A, */
- /* stored in the first KD+1 rows of the array. The j-th column */
- /* of A is stored in the j-th column of the array AB as follows: */
- /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
- /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array A. LDAB >= KD+1. */
- /* S (output) DOUBLE PRECISION array, dimension (N) */
- /* If INFO = 0, S contains the scale factors for A. */
- /* SCOND (output) DOUBLE PRECISION */
- /* If INFO = 0, S contains the ratio of the smallest S(i) to */
- /* the largest S(i). If SCOND >= 0.1 and AMAX is neither too */
- /* large nor too small, it is not worth scaling by S. */
- /* AMAX (output) DOUBLE PRECISION */
- /* Absolute value of largest matrix element. If AMAX is very */
- /* close to overflow or very close to underflow, the matrix */
- /* should be scaled. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = i, the i-th diagonal element is nonpositive. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- --s;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*kd < 0) {
- *info = -3;
- } else if (*ldab < *kd + 1) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPBEQU", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- *scond = 1.;
- *amax = 0.;
- return 0;
- }
- if (upper) {
- j = *kd + 1;
- } else {
- j = 1;
- }
- /* Initialize SMIN and AMAX. */
- s[1] = ab[j + ab_dim1];
- smin = s[1];
- *amax = s[1];
- /* Find the minimum and maximum diagonal elements. */
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- s[i__] = ab[j + i__ * ab_dim1];
- /* Computing MIN */
- d__1 = smin, d__2 = s[i__];
- smin = min(d__1,d__2);
- /* Computing MAX */
- d__1 = *amax, d__2 = s[i__];
- *amax = max(d__1,d__2);
- /* L10: */
- }
- if (smin <= 0.) {
- /* Find the first non-positive diagonal element and return. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (s[i__] <= 0.) {
- *info = i__;
- return 0;
- }
- /* L20: */
- }
- } else {
- /* Set the scale factors to the reciprocals */
- /* of the diagonal elements. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- s[i__] = 1. / sqrt(s[i__]);
- /* L30: */
- }
- /* Compute SCOND = min(S(I)) / max(S(I)) */
- *scond = sqrt(smin) / sqrt(*amax);
- }
- return 0;
- /* End of DPBEQU */
- } /* _starpu_dpbequ_ */
|