dormrz.c 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. /* dormrz.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static integer c__1 = 1;
  15. static integer c_n1 = -1;
  16. static integer c__2 = 2;
  17. static integer c__65 = 65;
  18. /* Subroutine */ int _starpu_dormrz_(char *side, char *trans, integer *m, integer *n,
  19. integer *k, integer *l, doublereal *a, integer *lda, doublereal *tau,
  20. doublereal *c__, integer *ldc, doublereal *work, integer *lwork,
  21. integer *info)
  22. {
  23. /* System generated locals */
  24. address a__1[2];
  25. integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
  26. i__5;
  27. char ch__1[2];
  28. /* Builtin functions */
  29. /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
  30. /* Local variables */
  31. integer i__;
  32. doublereal t[4160] /* was [65][64] */;
  33. integer i1, i2, i3, ib, ic, ja, jc, nb, mi, ni, nq, nw, iws;
  34. logical left;
  35. extern logical _starpu_lsame_(char *, char *);
  36. integer nbmin, iinfo;
  37. extern /* Subroutine */ int _starpu_dormr3_(char *, char *, integer *, integer *,
  38. integer *, integer *, doublereal *, integer *, doublereal *,
  39. doublereal *, integer *, doublereal *, integer *),
  40. _starpu_xerbla_(char *, integer *);
  41. extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
  42. integer *, integer *);
  43. extern /* Subroutine */ int _starpu_dlarzb_(char *, char *, char *, char *,
  44. integer *, integer *, integer *, integer *, doublereal *, integer
  45. *, doublereal *, integer *, doublereal *, integer *, doublereal *,
  46. integer *), _starpu_dlarzt_(char *, char
  47. *, integer *, integer *, doublereal *, integer *, doublereal *,
  48. doublereal *, integer *);
  49. logical notran;
  50. integer ldwork;
  51. char transt[1];
  52. integer lwkopt;
  53. logical lquery;
  54. /* -- LAPACK routine (version 3.2) -- */
  55. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  56. /* January 2007 */
  57. /* .. Scalar Arguments .. */
  58. /* .. */
  59. /* .. Array Arguments .. */
  60. /* .. */
  61. /* Purpose */
  62. /* ======= */
  63. /* DORMRZ overwrites the general real M-by-N matrix C with */
  64. /* SIDE = 'L' SIDE = 'R' */
  65. /* TRANS = 'N': Q * C C * Q */
  66. /* TRANS = 'T': Q**T * C C * Q**T */
  67. /* where Q is a real orthogonal matrix defined as the product of k */
  68. /* elementary reflectors */
  69. /* Q = H(1) H(2) . . . H(k) */
  70. /* as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N */
  71. /* if SIDE = 'R'. */
  72. /* Arguments */
  73. /* ========= */
  74. /* SIDE (input) CHARACTER*1 */
  75. /* = 'L': apply Q or Q**T from the Left; */
  76. /* = 'R': apply Q or Q**T from the Right. */
  77. /* TRANS (input) CHARACTER*1 */
  78. /* = 'N': No transpose, apply Q; */
  79. /* = 'T': Transpose, apply Q**T. */
  80. /* M (input) INTEGER */
  81. /* The number of rows of the matrix C. M >= 0. */
  82. /* N (input) INTEGER */
  83. /* The number of columns of the matrix C. N >= 0. */
  84. /* K (input) INTEGER */
  85. /* The number of elementary reflectors whose product defines */
  86. /* the matrix Q. */
  87. /* If SIDE = 'L', M >= K >= 0; */
  88. /* if SIDE = 'R', N >= K >= 0. */
  89. /* L (input) INTEGER */
  90. /* The number of columns of the matrix A containing */
  91. /* the meaningful part of the Householder reflectors. */
  92. /* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */
  93. /* A (input) DOUBLE PRECISION array, dimension */
  94. /* (LDA,M) if SIDE = 'L', */
  95. /* (LDA,N) if SIDE = 'R' */
  96. /* The i-th row must contain the vector which defines the */
  97. /* elementary reflector H(i), for i = 1,2,...,k, as returned by */
  98. /* DTZRZF in the last k rows of its array argument A. */
  99. /* A is modified by the routine but restored on exit. */
  100. /* LDA (input) INTEGER */
  101. /* The leading dimension of the array A. LDA >= max(1,K). */
  102. /* TAU (input) DOUBLE PRECISION array, dimension (K) */
  103. /* TAU(i) must contain the scalar factor of the elementary */
  104. /* reflector H(i), as returned by DTZRZF. */
  105. /* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
  106. /* On entry, the M-by-N matrix C. */
  107. /* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */
  108. /* LDC (input) INTEGER */
  109. /* The leading dimension of the array C. LDC >= max(1,M). */
  110. /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  111. /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  112. /* LWORK (input) INTEGER */
  113. /* The dimension of the array WORK. */
  114. /* If SIDE = 'L', LWORK >= max(1,N); */
  115. /* if SIDE = 'R', LWORK >= max(1,M). */
  116. /* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
  117. /* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
  118. /* blocksize. */
  119. /* If LWORK = -1, then a workspace query is assumed; the routine */
  120. /* only calculates the optimal size of the WORK array, returns */
  121. /* this value as the first entry of the WORK array, and no error */
  122. /* message related to LWORK is issued by XERBLA. */
  123. /* INFO (output) INTEGER */
  124. /* = 0: successful exit */
  125. /* < 0: if INFO = -i, the i-th argument had an illegal value */
  126. /* Further Details */
  127. /* =============== */
  128. /* Based on contributions by */
  129. /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
  130. /* ===================================================================== */
  131. /* .. Parameters .. */
  132. /* .. */
  133. /* .. Local Scalars .. */
  134. /* .. */
  135. /* .. Local Arrays .. */
  136. /* .. */
  137. /* .. External Functions .. */
  138. /* .. */
  139. /* .. External Subroutines .. */
  140. /* .. */
  141. /* .. Intrinsic Functions .. */
  142. /* .. */
  143. /* .. Executable Statements .. */
  144. /* Test the input arguments */
  145. /* Parameter adjustments */
  146. a_dim1 = *lda;
  147. a_offset = 1 + a_dim1;
  148. a -= a_offset;
  149. --tau;
  150. c_dim1 = *ldc;
  151. c_offset = 1 + c_dim1;
  152. c__ -= c_offset;
  153. --work;
  154. /* Function Body */
  155. *info = 0;
  156. left = _starpu_lsame_(side, "L");
  157. notran = _starpu_lsame_(trans, "N");
  158. lquery = *lwork == -1;
  159. /* NQ is the order of Q and NW is the minimum dimension of WORK */
  160. if (left) {
  161. nq = *m;
  162. nw = max(1,*n);
  163. } else {
  164. nq = *n;
  165. nw = max(1,*m);
  166. }
  167. if (! left && ! _starpu_lsame_(side, "R")) {
  168. *info = -1;
  169. } else if (! notran && ! _starpu_lsame_(trans, "T")) {
  170. *info = -2;
  171. } else if (*m < 0) {
  172. *info = -3;
  173. } else if (*n < 0) {
  174. *info = -4;
  175. } else if (*k < 0 || *k > nq) {
  176. *info = -5;
  177. } else if (*l < 0 || left && *l > *m || ! left && *l > *n) {
  178. *info = -6;
  179. } else if (*lda < max(1,*k)) {
  180. *info = -8;
  181. } else if (*ldc < max(1,*m)) {
  182. *info = -11;
  183. }
  184. if (*info == 0) {
  185. if (*m == 0 || *n == 0) {
  186. lwkopt = 1;
  187. } else {
  188. /* Determine the block size. NB may be at most NBMAX, where */
  189. /* NBMAX is used to define the local array T. */
  190. /* Computing MIN */
  191. /* Writing concatenation */
  192. i__3[0] = 1, a__1[0] = side;
  193. i__3[1] = 1, a__1[1] = trans;
  194. s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
  195. i__1 = 64, i__2 = _starpu_ilaenv_(&c__1, "DORMRQ", ch__1, m, n, k, &c_n1);
  196. nb = min(i__1,i__2);
  197. lwkopt = nw * nb;
  198. }
  199. work[1] = (doublereal) lwkopt;
  200. if (*lwork < max(1,nw) && ! lquery) {
  201. *info = -13;
  202. }
  203. }
  204. if (*info != 0) {
  205. i__1 = -(*info);
  206. _starpu_xerbla_("DORMRZ", &i__1);
  207. return 0;
  208. } else if (lquery) {
  209. return 0;
  210. }
  211. /* Quick return if possible */
  212. if (*m == 0 || *n == 0) {
  213. work[1] = 1.;
  214. return 0;
  215. }
  216. nbmin = 2;
  217. ldwork = nw;
  218. if (nb > 1 && nb < *k) {
  219. iws = nw * nb;
  220. if (*lwork < iws) {
  221. nb = *lwork / ldwork;
  222. /* Computing MAX */
  223. /* Writing concatenation */
  224. i__3[0] = 1, a__1[0] = side;
  225. i__3[1] = 1, a__1[1] = trans;
  226. s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
  227. i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DORMRQ", ch__1, m, n, k, &c_n1);
  228. nbmin = max(i__1,i__2);
  229. }
  230. } else {
  231. iws = nw;
  232. }
  233. if (nb < nbmin || nb >= *k) {
  234. /* Use unblocked code */
  235. _starpu_dormr3_(side, trans, m, n, k, l, &a[a_offset], lda, &tau[1], &c__[
  236. c_offset], ldc, &work[1], &iinfo);
  237. } else {
  238. /* Use blocked code */
  239. if (left && ! notran || ! left && notran) {
  240. i1 = 1;
  241. i2 = *k;
  242. i3 = nb;
  243. } else {
  244. i1 = (*k - 1) / nb * nb + 1;
  245. i2 = 1;
  246. i3 = -nb;
  247. }
  248. if (left) {
  249. ni = *n;
  250. jc = 1;
  251. ja = *m - *l + 1;
  252. } else {
  253. mi = *m;
  254. ic = 1;
  255. ja = *n - *l + 1;
  256. }
  257. if (notran) {
  258. *(unsigned char *)transt = 'T';
  259. } else {
  260. *(unsigned char *)transt = 'N';
  261. }
  262. i__1 = i2;
  263. i__2 = i3;
  264. for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  265. /* Computing MIN */
  266. i__4 = nb, i__5 = *k - i__ + 1;
  267. ib = min(i__4,i__5);
  268. /* Form the triangular factor of the block reflector */
  269. /* H = H(i+ib-1) . . . H(i+1) H(i) */
  270. _starpu_dlarzt_("Backward", "Rowwise", l, &ib, &a[i__ + ja * a_dim1], lda,
  271. &tau[i__], t, &c__65);
  272. if (left) {
  273. /* H or H' is applied to C(i:m,1:n) */
  274. mi = *m - i__ + 1;
  275. ic = i__;
  276. } else {
  277. /* H or H' is applied to C(1:m,i:n) */
  278. ni = *n - i__ + 1;
  279. jc = i__;
  280. }
  281. /* Apply H or H' */
  282. _starpu_dlarzb_(side, transt, "Backward", "Rowwise", &mi, &ni, &ib, l, &a[
  283. i__ + ja * a_dim1], lda, t, &c__65, &c__[ic + jc * c_dim1]
  284. , ldc, &work[1], &ldwork);
  285. /* L10: */
  286. }
  287. }
  288. work[1] = (doublereal) lwkopt;
  289. return 0;
  290. /* End of DORMRZ */
  291. } /* _starpu_dormrz_ */