123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- /* dorgbr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- /* Subroutine */ int _starpu_dorgbr_(char *vect, integer *m, integer *n, integer *k,
- doublereal *a, integer *lda, doublereal *tau, doublereal *work,
- integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- /* Local variables */
- integer i__, j, nb, mn;
- extern logical _starpu_lsame_(char *, char *);
- integer iinfo;
- logical wantq;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int _starpu_dorglq_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *), _starpu_dorgqr_(integer *, integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *);
- integer lwkopt;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DORGBR generates one of the real orthogonal matrices Q or P**T */
- /* determined by DGEBRD when reducing a real matrix A to bidiagonal */
- /* form: A = Q * B * P**T. Q and P**T are defined as products of */
- /* elementary reflectors H(i) or G(i) respectively. */
- /* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q */
- /* is of order M: */
- /* if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n */
- /* columns of Q, where m >= n >= k; */
- /* if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an */
- /* M-by-M matrix. */
- /* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T */
- /* is of order N: */
- /* if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m */
- /* rows of P**T, where n >= m >= k; */
- /* if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as */
- /* an N-by-N matrix. */
- /* Arguments */
- /* ========= */
- /* VECT (input) CHARACTER*1 */
- /* Specifies whether the matrix Q or the matrix P**T is */
- /* required, as defined in the transformation applied by DGEBRD: */
- /* = 'Q': generate Q; */
- /* = 'P': generate P**T. */
- /* M (input) INTEGER */
- /* The number of rows of the matrix Q or P**T to be returned. */
- /* M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix Q or P**T to be returned. */
- /* N >= 0. */
- /* If VECT = 'Q', M >= N >= min(M,K); */
- /* if VECT = 'P', N >= M >= min(N,K). */
- /* K (input) INTEGER */
- /* If VECT = 'Q', the number of columns in the original M-by-K */
- /* matrix reduced by DGEBRD. */
- /* If VECT = 'P', the number of rows in the original K-by-N */
- /* matrix reduced by DGEBRD. */
- /* K >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the vectors which define the elementary reflectors, */
- /* as returned by DGEBRD. */
- /* On exit, the M-by-N matrix Q or P**T. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* TAU (input) DOUBLE PRECISION array, dimension */
- /* (min(M,K)) if VECT = 'Q' */
- /* (min(N,K)) if VECT = 'P' */
- /* TAU(i) must contain the scalar factor of the elementary */
- /* reflector H(i) or G(i), which determines Q or P**T, as */
- /* returned by DGEBRD in its array argument TAUQ or TAUP. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,min(M,N)). */
- /* For optimum performance LWORK >= min(M,N)*NB, where NB */
- /* is the optimal blocksize. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --tau;
- --work;
- /* Function Body */
- *info = 0;
- wantq = _starpu_lsame_(vect, "Q");
- mn = min(*m,*n);
- lquery = *lwork == -1;
- if (! wantq && ! _starpu_lsame_(vect, "P")) {
- *info = -1;
- } else if (*m < 0) {
- *info = -2;
- } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && (
- *m > *n || *m < min(*n,*k))) {
- *info = -3;
- } else if (*k < 0) {
- *info = -4;
- } else if (*lda < max(1,*m)) {
- *info = -6;
- } else if (*lwork < max(1,mn) && ! lquery) {
- *info = -9;
- }
- if (*info == 0) {
- if (wantq) {
- nb = _starpu_ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1);
- } else {
- nb = _starpu_ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1);
- }
- lwkopt = max(1,mn) * nb;
- work[1] = (doublereal) lwkopt;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DORGBR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*m == 0 || *n == 0) {
- work[1] = 1.;
- return 0;
- }
- if (wantq) {
- /* Form Q, determined by a call to DGEBRD to reduce an m-by-k */
- /* matrix */
- if (*m >= *k) {
- /* If m >= k, assume m >= n >= k */
- _starpu_dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
- iinfo);
- } else {
- /* If m < k, assume m = n */
- /* Shift the vectors which define the elementary reflectors one */
- /* column to the right, and set the first row and column of Q */
- /* to those of the unit matrix */
- for (j = *m; j >= 2; --j) {
- a[j * a_dim1 + 1] = 0.;
- i__1 = *m;
- for (i__ = j + 1; i__ <= i__1; ++i__) {
- a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1];
- /* L10: */
- }
- /* L20: */
- }
- a[a_dim1 + 1] = 1.;
- i__1 = *m;
- for (i__ = 2; i__ <= i__1; ++i__) {
- a[i__ + a_dim1] = 0.;
- /* L30: */
- }
- if (*m > 1) {
- /* Form Q(2:m,2:m) */
- i__1 = *m - 1;
- i__2 = *m - 1;
- i__3 = *m - 1;
- _starpu_dorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[
- 1], &work[1], lwork, &iinfo);
- }
- }
- } else {
- /* Form P', determined by a call to DGEBRD to reduce a k-by-n */
- /* matrix */
- if (*k < *n) {
- /* If k < n, assume k <= m <= n */
- _starpu_dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
- iinfo);
- } else {
- /* If k >= n, assume m = n */
- /* Shift the vectors which define the elementary reflectors one */
- /* row downward, and set the first row and column of P' to */
- /* those of the unit matrix */
- a[a_dim1 + 1] = 1.;
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- a[i__ + a_dim1] = 0.;
- /* L40: */
- }
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- for (i__ = j - 1; i__ >= 2; --i__) {
- a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1];
- /* L50: */
- }
- a[j * a_dim1 + 1] = 0.;
- /* L60: */
- }
- if (*n > 1) {
- /* Form P'(2:n,2:n) */
- i__1 = *n - 1;
- i__2 = *n - 1;
- i__3 = *n - 1;
- _starpu_dorglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[
- 1], &work[1], lwork, &iinfo);
- }
- }
- }
- work[1] = (doublereal) lwkopt;
- return 0;
- /* End of DORGBR */
- } /* _starpu_dorgbr_ */
|