123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- /* dlatrz.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dlatrz_(integer *m, integer *n, integer *l, doublereal *
- a, integer *lda, doublereal *tau, doublereal *work)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- /* Local variables */
- integer i__;
- extern /* Subroutine */ int _starpu_dlarz_(char *, integer *, integer *, integer *
- , doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *), _starpu_dlarfp_(integer *, doublereal *,
- doublereal *, integer *, doublereal *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix */
- /* [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means */
- /* of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal */
- /* matrix and, R and A1 are M-by-M upper triangular matrices. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* L (input) INTEGER */
- /* The number of columns of the matrix A containing the */
- /* meaningful part of the Householder vectors. N-M >= L >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the leading M-by-N upper trapezoidal part of the */
- /* array A must contain the matrix to be factorized. */
- /* On exit, the leading M-by-M upper triangular part of A */
- /* contains the upper triangular matrix R, and elements N-L+1 to */
- /* N of the first M rows of A, with the array TAU, represent the */
- /* orthogonal matrix Z as a product of M elementary reflectors. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* TAU (output) DOUBLE PRECISION array, dimension (M) */
- /* The scalar factors of the elementary reflectors. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (M) */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
- /* The factorization is obtained by Householder's method. The kth */
- /* transformation matrix, Z( k ), which is used to introduce zeros into */
- /* the ( m - k + 1 )th row of A, is given in the form */
- /* Z( k ) = ( I 0 ), */
- /* ( 0 T( k ) ) */
- /* where */
- /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */
- /* ( 0 ) */
- /* ( z( k ) ) */
- /* tau is a scalar and z( k ) is an l element vector. tau and z( k ) */
- /* are chosen to annihilate the elements of the kth row of A2. */
- /* The scalar tau is returned in the kth element of TAU and the vector */
- /* u( k ) in the kth row of A2, such that the elements of z( k ) are */
- /* in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in */
- /* the upper triangular part of A1. */
- /* Z is given by */
- /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input arguments */
- /* Quick return if possible */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --tau;
- --work;
- /* Function Body */
- if (*m == 0) {
- return 0;
- } else if (*m == *n) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- tau[i__] = 0.;
- /* L10: */
- }
- return 0;
- }
- for (i__ = *m; i__ >= 1; --i__) {
- /* Generate elementary reflector H(i) to annihilate */
- /* [ A(i,i) A(i,n-l+1:n) ] */
- i__1 = *l + 1;
- _starpu_dlarfp_(&i__1, &a[i__ + i__ * a_dim1], &a[i__ + (*n - *l + 1) *
- a_dim1], lda, &tau[i__]);
- /* Apply H(i) to A(1:i-1,i:n) from the right */
- i__1 = i__ - 1;
- i__2 = *n - i__ + 1;
- _starpu_dlarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1],
- lda, &tau[i__], &a[i__ * a_dim1 + 1], lda, &work[1]);
- /* L20: */
- }
- return 0;
- /* End of DLATRZ */
- } /* _starpu_dlatrz_ */
|