123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825 |
- /* dlatps.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b36 = .5;
- /* Subroutine */ int _starpu_dlatps_(char *uplo, char *trans, char *diag, char *
- normin, integer *n, doublereal *ap, doublereal *x, doublereal *scale,
- doublereal *cnorm, integer *info)
- {
- /* System generated locals */
- integer i__1, i__2, i__3;
- doublereal d__1, d__2, d__3;
- /* Local variables */
- integer i__, j, ip;
- doublereal xj, rec, tjj;
- integer jinc, jlen;
- extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- doublereal xbnd;
- integer imax;
- doublereal tmax, tjjs, xmax, grow, sumj;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical _starpu_lsame_(char *, char *);
- doublereal tscal, uscal;
- extern doublereal _starpu_dasum_(integer *, doublereal *, integer *);
- integer jlast;
- extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *);
- logical upper;
- extern /* Subroutine */ int _starpu_dtpsv_(char *, char *, char *, integer *,
- doublereal *, doublereal *, integer *);
- extern doublereal _starpu_dlamch_(char *);
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal bignum;
- logical notran;
- integer jfirst;
- doublereal smlnum;
- logical nounit;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLATPS solves one of the triangular systems */
- /* A *x = s*b or A'*x = s*b */
- /* with scaling to prevent overflow, where A is an upper or lower */
- /* triangular matrix stored in packed form. Here A' denotes the */
- /* transpose of A, x and b are n-element vectors, and s is a scaling */
- /* factor, usually less than or equal to 1, chosen so that the */
- /* components of x will be less than the overflow threshold. If the */
- /* unscaled problem will not cause overflow, the Level 2 BLAS routine */
- /* DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j), */
- /* then s is set to 0 and a non-trivial solution to A*x = 0 is returned. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* Specifies whether the matrix A is upper or lower triangular. */
- /* = 'U': Upper triangular */
- /* = 'L': Lower triangular */
- /* TRANS (input) CHARACTER*1 */
- /* Specifies the operation applied to A. */
- /* = 'N': Solve A * x = s*b (No transpose) */
- /* = 'T': Solve A'* x = s*b (Transpose) */
- /* = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose) */
- /* DIAG (input) CHARACTER*1 */
- /* Specifies whether or not the matrix A is unit triangular. */
- /* = 'N': Non-unit triangular */
- /* = 'U': Unit triangular */
- /* NORMIN (input) CHARACTER*1 */
- /* Specifies whether CNORM has been set or not. */
- /* = 'Y': CNORM contains the column norms on entry */
- /* = 'N': CNORM is not set on entry. On exit, the norms will */
- /* be computed and stored in CNORM. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
- /* The upper or lower triangular matrix A, packed columnwise in */
- /* a linear array. The j-th column of A is stored in the array */
- /* AP as follows: */
- /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
- /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
- /* X (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the right hand side b of the triangular system. */
- /* On exit, X is overwritten by the solution vector x. */
- /* SCALE (output) DOUBLE PRECISION */
- /* The scaling factor s for the triangular system */
- /* A * x = s*b or A'* x = s*b. */
- /* If SCALE = 0, the matrix A is singular or badly scaled, and */
- /* the vector x is an exact or approximate solution to A*x = 0. */
- /* CNORM (input or output) DOUBLE PRECISION array, dimension (N) */
- /* If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
- /* contains the norm of the off-diagonal part of the j-th column */
- /* of A. If TRANS = 'N', CNORM(j) must be greater than or equal */
- /* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
- /* must be greater than or equal to the 1-norm. */
- /* If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
- /* returns the 1-norm of the offdiagonal part of the j-th column */
- /* of A. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -k, the k-th argument had an illegal value */
- /* Further Details */
- /* ======= ======= */
- /* A rough bound on x is computed; if that is less than overflow, DTPSV */
- /* is called, otherwise, specific code is used which checks for possible */
- /* overflow or divide-by-zero at every operation. */
- /* A columnwise scheme is used for solving A*x = b. The basic algorithm */
- /* if A is lower triangular is */
- /* x[1:n] := b[1:n] */
- /* for j = 1, ..., n */
- /* x(j) := x(j) / A(j,j) */
- /* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
- /* end */
- /* Define bounds on the components of x after j iterations of the loop: */
- /* M(j) = bound on x[1:j] */
- /* G(j) = bound on x[j+1:n] */
- /* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}. */
- /* Then for iteration j+1 we have */
- /* M(j+1) <= G(j) / | A(j+1,j+1) | */
- /* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
- /* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
- /* where CNORM(j+1) is greater than or equal to the infinity-norm of */
- /* column j+1 of A, not counting the diagonal. Hence */
- /* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
- /* 1<=i<=j */
- /* and */
- /* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
- /* 1<=i< j */
- /* Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the */
- /* reciprocal of the largest M(j), j=1,..,n, is larger than */
- /* max(underflow, 1/overflow). */
- /* The bound on x(j) is also used to determine when a step in the */
- /* columnwise method can be performed without fear of overflow. If */
- /* the computed bound is greater than a large constant, x is scaled to */
- /* prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
- /* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
- /* Similarly, a row-wise scheme is used to solve A'*x = b. The basic */
- /* algorithm for A upper triangular is */
- /* for j = 1, ..., n */
- /* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
- /* end */
- /* We simultaneously compute two bounds */
- /* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
- /* M(j) = bound on x(i), 1<=i<=j */
- /* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we */
- /* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
- /* Then the bound on x(j) is */
- /* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
- /* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
- /* 1<=i<=j */
- /* and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater */
- /* than max(underflow, 1/overflow). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --cnorm;
- --x;
- --ap;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- notran = _starpu_lsame_(trans, "N");
- nounit = _starpu_lsame_(diag, "N");
- /* Test the input parameters. */
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (! notran && ! _starpu_lsame_(trans, "T") && !
- _starpu_lsame_(trans, "C")) {
- *info = -2;
- } else if (! nounit && ! _starpu_lsame_(diag, "U")) {
- *info = -3;
- } else if (! _starpu_lsame_(normin, "Y") && ! _starpu_lsame_(normin,
- "N")) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLATPS", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Determine machine dependent parameters to control overflow. */
- smlnum = _starpu_dlamch_("Safe minimum") / _starpu_dlamch_("Precision");
- bignum = 1. / smlnum;
- *scale = 1.;
- if (_starpu_lsame_(normin, "N")) {
- /* Compute the 1-norm of each column, not including the diagonal. */
- if (upper) {
- /* A is upper triangular. */
- ip = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- cnorm[j] = _starpu_dasum_(&i__2, &ap[ip], &c__1);
- ip += j;
- /* L10: */
- }
- } else {
- /* A is lower triangular. */
- ip = 1;
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n - j;
- cnorm[j] = _starpu_dasum_(&i__2, &ap[ip + 1], &c__1);
- ip = ip + *n - j + 1;
- /* L20: */
- }
- cnorm[*n] = 0.;
- }
- }
- /* Scale the column norms by TSCAL if the maximum element in CNORM is */
- /* greater than BIGNUM. */
- imax = _starpu_idamax_(n, &cnorm[1], &c__1);
- tmax = cnorm[imax];
- if (tmax <= bignum) {
- tscal = 1.;
- } else {
- tscal = 1. / (smlnum * tmax);
- _starpu_dscal_(n, &tscal, &cnorm[1], &c__1);
- }
- /* Compute a bound on the computed solution vector to see if the */
- /* Level 2 BLAS routine DTPSV can be used. */
- j = _starpu_idamax_(n, &x[1], &c__1);
- xmax = (d__1 = x[j], abs(d__1));
- xbnd = xmax;
- if (notran) {
- /* Compute the growth in A * x = b. */
- if (upper) {
- jfirst = *n;
- jlast = 1;
- jinc = -1;
- } else {
- jfirst = 1;
- jlast = *n;
- jinc = 1;
- }
- if (tscal != 1.) {
- grow = 0.;
- goto L50;
- }
- if (nounit) {
- /* A is non-unit triangular. */
- /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
- /* Initially, G(0) = max{x(i), i=1,...,n}. */
- grow = 1. / max(xbnd,smlnum);
- xbnd = grow;
- ip = jfirst * (jfirst + 1) / 2;
- jlen = *n;
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
- /* Exit the loop if the growth factor is too small. */
- if (grow <= smlnum) {
- goto L50;
- }
- /* M(j) = G(j-1) / abs(A(j,j)) */
- tjj = (d__1 = ap[ip], abs(d__1));
- /* Computing MIN */
- d__1 = xbnd, d__2 = min(1.,tjj) * grow;
- xbnd = min(d__1,d__2);
- if (tjj + cnorm[j] >= smlnum) {
- /* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
- grow *= tjj / (tjj + cnorm[j]);
- } else {
- /* G(j) could overflow, set GROW to 0. */
- grow = 0.;
- }
- ip += jinc * jlen;
- --jlen;
- /* L30: */
- }
- grow = xbnd;
- } else {
- /* A is unit triangular. */
- /* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */
- /* Computing MIN */
- d__1 = 1., d__2 = 1. / max(xbnd,smlnum);
- grow = min(d__1,d__2);
- i__2 = jlast;
- i__1 = jinc;
- for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
- /* Exit the loop if the growth factor is too small. */
- if (grow <= smlnum) {
- goto L50;
- }
- /* G(j) = G(j-1)*( 1 + CNORM(j) ) */
- grow *= 1. / (cnorm[j] + 1.);
- /* L40: */
- }
- }
- L50:
- ;
- } else {
- /* Compute the growth in A' * x = b. */
- if (upper) {
- jfirst = 1;
- jlast = *n;
- jinc = 1;
- } else {
- jfirst = *n;
- jlast = 1;
- jinc = -1;
- }
- if (tscal != 1.) {
- grow = 0.;
- goto L80;
- }
- if (nounit) {
- /* A is non-unit triangular. */
- /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
- /* Initially, M(0) = max{x(i), i=1,...,n}. */
- grow = 1. / max(xbnd,smlnum);
- xbnd = grow;
- ip = jfirst * (jfirst + 1) / 2;
- jlen = 1;
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
- /* Exit the loop if the growth factor is too small. */
- if (grow <= smlnum) {
- goto L80;
- }
- /* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
- xj = cnorm[j] + 1.;
- /* Computing MIN */
- d__1 = grow, d__2 = xbnd / xj;
- grow = min(d__1,d__2);
- /* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
- tjj = (d__1 = ap[ip], abs(d__1));
- if (xj > tjj) {
- xbnd *= tjj / xj;
- }
- ++jlen;
- ip += jinc * jlen;
- /* L60: */
- }
- grow = min(grow,xbnd);
- } else {
- /* A is unit triangular. */
- /* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */
- /* Computing MIN */
- d__1 = 1., d__2 = 1. / max(xbnd,smlnum);
- grow = min(d__1,d__2);
- i__2 = jlast;
- i__1 = jinc;
- for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
- /* Exit the loop if the growth factor is too small. */
- if (grow <= smlnum) {
- goto L80;
- }
- /* G(j) = ( 1 + CNORM(j) )*G(j-1) */
- xj = cnorm[j] + 1.;
- grow /= xj;
- /* L70: */
- }
- }
- L80:
- ;
- }
- if (grow * tscal > smlnum) {
- /* Use the Level 2 BLAS solve if the reciprocal of the bound on */
- /* elements of X is not too small. */
- _starpu_dtpsv_(uplo, trans, diag, n, &ap[1], &x[1], &c__1);
- } else {
- /* Use a Level 1 BLAS solve, scaling intermediate results. */
- if (xmax > bignum) {
- /* Scale X so that its components are less than or equal to */
- /* BIGNUM in absolute value. */
- *scale = bignum / xmax;
- _starpu_dscal_(n, scale, &x[1], &c__1);
- xmax = bignum;
- }
- if (notran) {
- /* Solve A * x = b */
- ip = jfirst * (jfirst + 1) / 2;
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
- /* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
- xj = (d__1 = x[j], abs(d__1));
- if (nounit) {
- tjjs = ap[ip] * tscal;
- } else {
- tjjs = tscal;
- if (tscal == 1.) {
- goto L100;
- }
- }
- tjj = abs(tjjs);
- if (tjj > smlnum) {
- /* abs(A(j,j)) > SMLNUM: */
- if (tjj < 1.) {
- if (xj > tjj * bignum) {
- /* Scale x by 1/b(j). */
- rec = 1. / xj;
- _starpu_dscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- x[j] /= tjjs;
- xj = (d__1 = x[j], abs(d__1));
- } else if (tjj > 0.) {
- /* 0 < abs(A(j,j)) <= SMLNUM: */
- if (xj > tjj * bignum) {
- /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
- /* to avoid overflow when dividing by A(j,j). */
- rec = tjj * bignum / xj;
- if (cnorm[j] > 1.) {
- /* Scale by 1/CNORM(j) to avoid overflow when */
- /* multiplying x(j) times column j. */
- rec /= cnorm[j];
- }
- _starpu_dscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- x[j] /= tjjs;
- xj = (d__1 = x[j], abs(d__1));
- } else {
- /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
- /* scale = 0, and compute a solution to A*x = 0. */
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- x[i__] = 0.;
- /* L90: */
- }
- x[j] = 1.;
- xj = 1.;
- *scale = 0.;
- xmax = 0.;
- }
- L100:
- /* Scale x if necessary to avoid overflow when adding a */
- /* multiple of column j of A. */
- if (xj > 1.) {
- rec = 1. / xj;
- if (cnorm[j] > (bignum - xmax) * rec) {
- /* Scale x by 1/(2*abs(x(j))). */
- rec *= .5;
- _starpu_dscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- }
- } else if (xj * cnorm[j] > bignum - xmax) {
- /* Scale x by 1/2. */
- _starpu_dscal_(n, &c_b36, &x[1], &c__1);
- *scale *= .5;
- }
- if (upper) {
- if (j > 1) {
- /* Compute the update */
- /* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */
- i__3 = j - 1;
- d__1 = -x[j] * tscal;
- _starpu_daxpy_(&i__3, &d__1, &ap[ip - j + 1], &c__1, &x[1], &
- c__1);
- i__3 = j - 1;
- i__ = _starpu_idamax_(&i__3, &x[1], &c__1);
- xmax = (d__1 = x[i__], abs(d__1));
- }
- ip -= j;
- } else {
- if (j < *n) {
- /* Compute the update */
- /* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */
- i__3 = *n - j;
- d__1 = -x[j] * tscal;
- _starpu_daxpy_(&i__3, &d__1, &ap[ip + 1], &c__1, &x[j + 1], &
- c__1);
- i__3 = *n - j;
- i__ = j + _starpu_idamax_(&i__3, &x[j + 1], &c__1);
- xmax = (d__1 = x[i__], abs(d__1));
- }
- ip = ip + *n - j + 1;
- }
- /* L110: */
- }
- } else {
- /* Solve A' * x = b */
- ip = jfirst * (jfirst + 1) / 2;
- jlen = 1;
- i__2 = jlast;
- i__1 = jinc;
- for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
- /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
- /* k<>j */
- xj = (d__1 = x[j], abs(d__1));
- uscal = tscal;
- rec = 1. / max(xmax,1.);
- if (cnorm[j] > (bignum - xj) * rec) {
- /* If x(j) could overflow, scale x by 1/(2*XMAX). */
- rec *= .5;
- if (nounit) {
- tjjs = ap[ip] * tscal;
- } else {
- tjjs = tscal;
- }
- tjj = abs(tjjs);
- if (tjj > 1.) {
- /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
- /* Computing MIN */
- d__1 = 1., d__2 = rec * tjj;
- rec = min(d__1,d__2);
- uscal /= tjjs;
- }
- if (rec < 1.) {
- _starpu_dscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- sumj = 0.;
- if (uscal == 1.) {
- /* If the scaling needed for A in the dot product is 1, */
- /* call DDOT to perform the dot product. */
- if (upper) {
- i__3 = j - 1;
- sumj = _starpu_ddot_(&i__3, &ap[ip - j + 1], &c__1, &x[1], &
- c__1);
- } else if (j < *n) {
- i__3 = *n - j;
- sumj = _starpu_ddot_(&i__3, &ap[ip + 1], &c__1, &x[j + 1], &
- c__1);
- }
- } else {
- /* Otherwise, use in-line code for the dot product. */
- if (upper) {
- i__3 = j - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- sumj += ap[ip - j + i__] * uscal * x[i__];
- /* L120: */
- }
- } else if (j < *n) {
- i__3 = *n - j;
- for (i__ = 1; i__ <= i__3; ++i__) {
- sumj += ap[ip + i__] * uscal * x[j + i__];
- /* L130: */
- }
- }
- }
- if (uscal == tscal) {
- /* Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j) */
- /* was not used to scale the dotproduct. */
- x[j] -= sumj;
- xj = (d__1 = x[j], abs(d__1));
- if (nounit) {
- /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
- tjjs = ap[ip] * tscal;
- } else {
- tjjs = tscal;
- if (tscal == 1.) {
- goto L150;
- }
- }
- tjj = abs(tjjs);
- if (tjj > smlnum) {
- /* abs(A(j,j)) > SMLNUM: */
- if (tjj < 1.) {
- if (xj > tjj * bignum) {
- /* Scale X by 1/abs(x(j)). */
- rec = 1. / xj;
- _starpu_dscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- x[j] /= tjjs;
- } else if (tjj > 0.) {
- /* 0 < abs(A(j,j)) <= SMLNUM: */
- if (xj > tjj * bignum) {
- /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
- rec = tjj * bignum / xj;
- _starpu_dscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- x[j] /= tjjs;
- } else {
- /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
- /* scale = 0, and compute a solution to A'*x = 0. */
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- x[i__] = 0.;
- /* L140: */
- }
- x[j] = 1.;
- *scale = 0.;
- xmax = 0.;
- }
- L150:
- ;
- } else {
- /* Compute x(j) := x(j) / A(j,j) - sumj if the dot */
- /* product has already been divided by 1/A(j,j). */
- x[j] = x[j] / tjjs - sumj;
- }
- /* Computing MAX */
- d__2 = xmax, d__3 = (d__1 = x[j], abs(d__1));
- xmax = max(d__2,d__3);
- ++jlen;
- ip += jinc * jlen;
- /* L160: */
- }
- }
- *scale /= tscal;
- }
- /* Scale the column norms by 1/TSCAL for return. */
- if (tscal != 1.) {
- d__1 = 1. / tscal;
- _starpu_dscal_(n, &d__1, &cnorm[1], &c__1);
- }
- return 0;
- /* End of DLATPS */
- } /* _starpu_dlatps_ */
|