123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- /* dlasv2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b3 = 2.;
- static doublereal c_b4 = 1.;
- /* Subroutine */ int _starpu_dlasv2_(doublereal *f, doublereal *g, doublereal *h__,
- doublereal *ssmin, doublereal *ssmax, doublereal *snr, doublereal *
- csr, doublereal *snl, doublereal *csl)
- {
- /* System generated locals */
- doublereal d__1;
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
- /* Local variables */
- doublereal a, d__, l, m, r__, s, t, fa, ga, ha, ft, gt, ht, mm, tt, clt,
- crt, slt, srt;
- integer pmax;
- doublereal temp;
- logical swap;
- doublereal tsign;
- extern doublereal _starpu_dlamch_(char *);
- logical gasmal;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLASV2 computes the singular value decomposition of a 2-by-2 */
- /* triangular matrix */
- /* [ F G ] */
- /* [ 0 H ]. */
- /* On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the */
- /* smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and */
- /* right singular vectors for abs(SSMAX), giving the decomposition */
- /* [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] */
- /* [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. */
- /* Arguments */
- /* ========= */
- /* F (input) DOUBLE PRECISION */
- /* The (1,1) element of the 2-by-2 matrix. */
- /* G (input) DOUBLE PRECISION */
- /* The (1,2) element of the 2-by-2 matrix. */
- /* H (input) DOUBLE PRECISION */
- /* The (2,2) element of the 2-by-2 matrix. */
- /* SSMIN (output) DOUBLE PRECISION */
- /* abs(SSMIN) is the smaller singular value. */
- /* SSMAX (output) DOUBLE PRECISION */
- /* abs(SSMAX) is the larger singular value. */
- /* SNL (output) DOUBLE PRECISION */
- /* CSL (output) DOUBLE PRECISION */
- /* The vector (CSL, SNL) is a unit left singular vector for the */
- /* singular value abs(SSMAX). */
- /* SNR (output) DOUBLE PRECISION */
- /* CSR (output) DOUBLE PRECISION */
- /* The vector (CSR, SNR) is a unit right singular vector for the */
- /* singular value abs(SSMAX). */
- /* Further Details */
- /* =============== */
- /* Any input parameter may be aliased with any output parameter. */
- /* Barring over/underflow and assuming a guard digit in subtraction, all */
- /* output quantities are correct to within a few units in the last */
- /* place (ulps). */
- /* In IEEE arithmetic, the code works correctly if one matrix element is */
- /* infinite. */
- /* Overflow will not occur unless the largest singular value itself */
- /* overflows or is within a few ulps of overflow. (On machines with */
- /* partial overflow, like the Cray, overflow may occur if the largest */
- /* singular value is within a factor of 2 of overflow.) */
- /* Underflow is harmless if underflow is gradual. Otherwise, results */
- /* may correspond to a matrix modified by perturbations of size near */
- /* the underflow threshold. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- ft = *f;
- fa = abs(ft);
- ht = *h__;
- ha = abs(*h__);
- /* PMAX points to the maximum absolute element of matrix */
- /* PMAX = 1 if F largest in absolute values */
- /* PMAX = 2 if G largest in absolute values */
- /* PMAX = 3 if H largest in absolute values */
- pmax = 1;
- swap = ha > fa;
- if (swap) {
- pmax = 3;
- temp = ft;
- ft = ht;
- ht = temp;
- temp = fa;
- fa = ha;
- ha = temp;
- /* Now FA .ge. HA */
- }
- gt = *g;
- ga = abs(gt);
- if (ga == 0.) {
- /* Diagonal matrix */
- *ssmin = ha;
- *ssmax = fa;
- clt = 1.;
- crt = 1.;
- slt = 0.;
- srt = 0.;
- } else {
- gasmal = TRUE_;
- if (ga > fa) {
- pmax = 2;
- if (fa / ga < _starpu_dlamch_("EPS")) {
- /* Case of very large GA */
- gasmal = FALSE_;
- *ssmax = ga;
- if (ha > 1.) {
- *ssmin = fa / (ga / ha);
- } else {
- *ssmin = fa / ga * ha;
- }
- clt = 1.;
- slt = ht / gt;
- srt = 1.;
- crt = ft / gt;
- }
- }
- if (gasmal) {
- /* Normal case */
- d__ = fa - ha;
- if (d__ == fa) {
- /* Copes with infinite F or H */
- l = 1.;
- } else {
- l = d__ / fa;
- }
- /* Note that 0 .le. L .le. 1 */
- m = gt / ft;
- /* Note that abs(M) .le. 1/macheps */
- t = 2. - l;
- /* Note that T .ge. 1 */
- mm = m * m;
- tt = t * t;
- s = sqrt(tt + mm);
- /* Note that 1 .le. S .le. 1 + 1/macheps */
- if (l == 0.) {
- r__ = abs(m);
- } else {
- r__ = sqrt(l * l + mm);
- }
- /* Note that 0 .le. R .le. 1 + 1/macheps */
- a = (s + r__) * .5;
- /* Note that 1 .le. A .le. 1 + abs(M) */
- *ssmin = ha / a;
- *ssmax = fa * a;
- if (mm == 0.) {
- /* Note that M is very tiny */
- if (l == 0.) {
- t = d_sign(&c_b3, &ft) * d_sign(&c_b4, >);
- } else {
- t = gt / d_sign(&d__, &ft) + m / t;
- }
- } else {
- t = (m / (s + t) + m / (r__ + l)) * (a + 1.);
- }
- l = sqrt(t * t + 4.);
- crt = 2. / l;
- srt = t / l;
- clt = (crt + srt * m) / a;
- slt = ht / ft * srt / a;
- }
- }
- if (swap) {
- *csl = srt;
- *snl = crt;
- *csr = slt;
- *snr = clt;
- } else {
- *csl = clt;
- *snl = slt;
- *csr = crt;
- *snr = srt;
- }
- /* Correct signs of SSMAX and SSMIN */
- if (pmax == 1) {
- tsign = d_sign(&c_b4, csr) * d_sign(&c_b4, csl) * d_sign(&c_b4, f);
- }
- if (pmax == 2) {
- tsign = d_sign(&c_b4, snr) * d_sign(&c_b4, csl) * d_sign(&c_b4, g);
- }
- if (pmax == 3) {
- tsign = d_sign(&c_b4, snr) * d_sign(&c_b4, snl) * d_sign(&c_b4, h__);
- }
- *ssmax = d_sign(ssmax, &tsign);
- d__1 = tsign * d_sign(&c_b4, f) * d_sign(&c_b4, h__);
- *ssmin = d_sign(ssmin, &d__1);
- return 0;
- /* End of DLASV2 */
- } /* _starpu_dlasv2_ */
|