123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 |
- /* dlasdq.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dlasdq_(char *uplo, integer *sqre, integer *n, integer *
- ncvt, integer *nru, integer *ncc, doublereal *d__, doublereal *e,
- doublereal *vt, integer *ldvt, doublereal *u, integer *ldu,
- doublereal *c__, integer *ldc, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
- i__2;
- /* Local variables */
- integer i__, j;
- doublereal r__, cs, sn;
- integer np1, isub;
- doublereal smin;
- integer sqre1;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dlasr_(char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer *
- , doublereal *, integer *);
- integer iuplo;
- extern /* Subroutine */ int _starpu_dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *), _starpu_xerbla_(char *,
- integer *), _starpu_dbdsqr_(char *, integer *, integer *, integer
- *, integer *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *);
- logical rotate;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLASDQ computes the singular value decomposition (SVD) of a real */
- /* (upper or lower) bidiagonal matrix with diagonal D and offdiagonal */
- /* E, accumulating the transformations if desired. Letting B denote */
- /* the input bidiagonal matrix, the algorithm computes orthogonal */
- /* matrices Q and P such that B = Q * S * P' (P' denotes the transpose */
- /* of P). The singular values S are overwritten on D. */
- /* The input matrix U is changed to U * Q if desired. */
- /* The input matrix VT is changed to P' * VT if desired. */
- /* The input matrix C is changed to Q' * C if desired. */
- /* See "Computing Small Singular Values of Bidiagonal Matrices With */
- /* Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
- /* LAPACK Working Note #3, for a detailed description of the algorithm. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* On entry, UPLO specifies whether the input bidiagonal matrix */
- /* is upper or lower bidiagonal, and wether it is square are */
- /* not. */
- /* UPLO = 'U' or 'u' B is upper bidiagonal. */
- /* UPLO = 'L' or 'l' B is lower bidiagonal. */
- /* SQRE (input) INTEGER */
- /* = 0: then the input matrix is N-by-N. */
- /* = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and */
- /* (N+1)-by-N if UPLU = 'L'. */
- /* The bidiagonal matrix has */
- /* N = NL + NR + 1 rows and */
- /* M = N + SQRE >= N columns. */
- /* N (input) INTEGER */
- /* On entry, N specifies the number of rows and columns */
- /* in the matrix. N must be at least 0. */
- /* NCVT (input) INTEGER */
- /* On entry, NCVT specifies the number of columns of */
- /* the matrix VT. NCVT must be at least 0. */
- /* NRU (input) INTEGER */
- /* On entry, NRU specifies the number of rows of */
- /* the matrix U. NRU must be at least 0. */
- /* NCC (input) INTEGER */
- /* On entry, NCC specifies the number of columns of */
- /* the matrix C. NCC must be at least 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, D contains the diagonal entries of the */
- /* bidiagonal matrix whose SVD is desired. On normal exit, */
- /* D contains the singular values in ascending order. */
- /* E (input/output) DOUBLE PRECISION array. */
- /* dimension is (N-1) if SQRE = 0 and N if SQRE = 1. */
- /* On entry, the entries of E contain the offdiagonal entries */
- /* of the bidiagonal matrix whose SVD is desired. On normal */
- /* exit, E will contain 0. If the algorithm does not converge, */
- /* D and E will contain the diagonal and superdiagonal entries */
- /* of a bidiagonal matrix orthogonally equivalent to the one */
- /* given as input. */
- /* VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT) */
- /* On entry, contains a matrix which on exit has been */
- /* premultiplied by P', dimension N-by-NCVT if SQRE = 0 */
- /* and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0). */
- /* LDVT (input) INTEGER */
- /* On entry, LDVT specifies the leading dimension of VT as */
- /* declared in the calling (sub) program. LDVT must be at */
- /* least 1. If NCVT is nonzero LDVT must also be at least N. */
- /* U (input/output) DOUBLE PRECISION array, dimension (LDU, N) */
- /* On entry, contains a matrix which on exit has been */
- /* postmultiplied by Q, dimension NRU-by-N if SQRE = 0 */
- /* and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0). */
- /* LDU (input) INTEGER */
- /* On entry, LDU specifies the leading dimension of U as */
- /* declared in the calling (sub) program. LDU must be at */
- /* least max( 1, NRU ) . */
- /* C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC) */
- /* On entry, contains an N-by-NCC matrix which on exit */
- /* has been premultiplied by Q' dimension N-by-NCC if SQRE = 0 */
- /* and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0). */
- /* LDC (input) INTEGER */
- /* On entry, LDC specifies the leading dimension of C as */
- /* declared in the calling (sub) program. LDC must be at */
- /* least 1. If NCC is nonzero, LDC must also be at least N. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */
- /* Workspace. Only referenced if one of NCVT, NRU, or NCC is */
- /* nonzero, and if N is at least 2. */
- /* INFO (output) INTEGER */
- /* On exit, a value of 0 indicates a successful exit. */
- /* If INFO < 0, argument number -INFO is illegal. */
- /* If INFO > 0, the algorithm did not converge, and INFO */
- /* specifies how many superdiagonals did not converge. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1;
- vt -= vt_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- --work;
- /* Function Body */
- *info = 0;
- iuplo = 0;
- if (_starpu_lsame_(uplo, "U")) {
- iuplo = 1;
- }
- if (_starpu_lsame_(uplo, "L")) {
- iuplo = 2;
- }
- if (iuplo == 0) {
- *info = -1;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ncvt < 0) {
- *info = -4;
- } else if (*nru < 0) {
- *info = -5;
- } else if (*ncc < 0) {
- *info = -6;
- } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) {
- *info = -10;
- } else if (*ldu < max(1,*nru)) {
- *info = -12;
- } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) {
- *info = -14;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLASDQ", &i__1);
- return 0;
- }
- if (*n == 0) {
- return 0;
- }
- /* ROTATE is true if any singular vectors desired, false otherwise */
- rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
- np1 = *n + 1;
- sqre1 = *sqre;
- /* If matrix non-square upper bidiagonal, rotate to be lower */
- /* bidiagonal. The rotations are on the right. */
- if (iuplo == 1 && sqre1 == 1) {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- _starpu_dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (rotate) {
- work[i__] = cs;
- work[*n + i__] = sn;
- }
- /* L10: */
- }
- _starpu_dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
- d__[*n] = r__;
- e[*n] = 0.;
- if (rotate) {
- work[*n] = cs;
- work[*n + *n] = sn;
- }
- iuplo = 2;
- sqre1 = 0;
- /* Update singular vectors if desired. */
- if (*ncvt > 0) {
- _starpu_dlasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[
- vt_offset], ldvt);
- }
- }
- /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
- /* by applying Givens rotations on the left. */
- if (iuplo == 2) {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- _starpu_dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (rotate) {
- work[i__] = cs;
- work[*n + i__] = sn;
- }
- /* L20: */
- }
- /* If matrix (N+1)-by-N lower bidiagonal, one additional */
- /* rotation is needed. */
- if (sqre1 == 1) {
- _starpu_dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
- d__[*n] = r__;
- if (rotate) {
- work[*n] = cs;
- work[*n + *n] = sn;
- }
- }
- /* Update singular vectors if desired. */
- if (*nru > 0) {
- if (sqre1 == 0) {
- _starpu_dlasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[
- u_offset], ldu);
- } else {
- _starpu_dlasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[
- u_offset], ldu);
- }
- }
- if (*ncc > 0) {
- if (sqre1 == 0) {
- _starpu_dlasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[
- c_offset], ldc);
- } else {
- _starpu_dlasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[
- c_offset], ldc);
- }
- }
- }
- /* Call DBDSQR to compute the SVD of the reduced real */
- /* N-by-N upper bidiagonal matrix. */
- _starpu_dbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[
- u_offset], ldu, &c__[c_offset], ldc, &work[1], info);
- /* Sort the singular values into ascending order (insertion sort on */
- /* singular values, but only one transposition per singular vector) */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Scan for smallest D(I). */
- isub = i__;
- smin = d__[i__];
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- if (d__[j] < smin) {
- isub = j;
- smin = d__[j];
- }
- /* L30: */
- }
- if (isub != i__) {
- /* Swap singular values and vectors. */
- d__[isub] = d__[i__];
- d__[i__] = smin;
- if (*ncvt > 0) {
- _starpu_dswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[i__ + vt_dim1],
- ldvt);
- }
- if (*nru > 0) {
- _starpu_dswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[i__ * u_dim1 + 1]
- , &c__1);
- }
- if (*ncc > 0) {
- _starpu_dswap_(ncc, &c__[isub + c_dim1], ldc, &c__[i__ + c_dim1], ldc)
- ;
- }
- }
- /* L40: */
- }
- return 0;
- /* End of DLASDQ */
- } /* _starpu_dlasdq_ */
|