123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 |
- /* dlasda.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__0 = 0;
- static doublereal c_b11 = 0.;
- static doublereal c_b12 = 1.;
- static integer c__1 = 1;
- static integer c__2 = 2;
- /* Subroutine */ int _starpu_dlasda_(integer *icompq, integer *smlsiz, integer *n,
- integer *sqre, doublereal *d__, doublereal *e, doublereal *u, integer
- *ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr,
- doublereal *z__, doublereal *poles, integer *givptr, integer *givcol,
- integer *ldgcol, integer *perm, doublereal *givnum, doublereal *c__,
- doublereal *s, doublereal *work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
- difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
- poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
- z_dim1, z_offset, i__1, i__2;
- /* Builtin functions */
- integer pow_ii(integer *, integer *);
- /* Local variables */
- integer i__, j, m, i1, ic, lf, nd, ll, nl, vf, nr, vl, im1, ncc, nlf, nrf,
- vfi, iwk, vli, lvl, nru, ndb1, nlp1, lvl2, nrp1;
- doublereal beta;
- integer idxq, nlvl;
- doublereal alpha;
- integer inode, ndiml, ndimr, idxqi, itemp;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer sqrei;
- extern /* Subroutine */ int _starpu_dlasd6_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, integer *, integer *);
- integer nwork1, nwork2;
- extern /* Subroutine */ int _starpu_dlasdq_(char *, integer *, integer *, integer
- *, integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlasdt_(integer *, integer *,
- integer *, integer *, integer *, integer *, integer *), _starpu_dlaset_(
- char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *), _starpu_xerbla_(char *, integer *);
- integer smlszp;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* Using a divide and conquer approach, DLASDA computes the singular */
- /* value decomposition (SVD) of a real upper bidiagonal N-by-M matrix */
- /* B with diagonal D and offdiagonal E, where M = N + SQRE. The */
- /* algorithm computes the singular values in the SVD B = U * S * VT. */
- /* The orthogonal matrices U and VT are optionally computed in */
- /* compact form. */
- /* A related subroutine, DLASD0, computes the singular values and */
- /* the singular vectors in explicit form. */
- /* Arguments */
- /* ========= */
- /* ICOMPQ (input) INTEGER */
- /* Specifies whether singular vectors are to be computed */
- /* in compact form, as follows */
- /* = 0: Compute singular values only. */
- /* = 1: Compute singular vectors of upper bidiagonal */
- /* matrix in compact form. */
- /* SMLSIZ (input) INTEGER */
- /* The maximum size of the subproblems at the bottom of the */
- /* computation tree. */
- /* N (input) INTEGER */
- /* The row dimension of the upper bidiagonal matrix. This is */
- /* also the dimension of the main diagonal array D. */
- /* SQRE (input) INTEGER */
- /* Specifies the column dimension of the bidiagonal matrix. */
- /* = 0: The bidiagonal matrix has column dimension M = N; */
- /* = 1: The bidiagonal matrix has column dimension M = N + 1. */
- /* D (input/output) DOUBLE PRECISION array, dimension ( N ) */
- /* On entry D contains the main diagonal of the bidiagonal */
- /* matrix. On exit D, if INFO = 0, contains its singular values. */
- /* E (input) DOUBLE PRECISION array, dimension ( M-1 ) */
- /* Contains the subdiagonal entries of the bidiagonal matrix. */
- /* On exit, E has been destroyed. */
- /* U (output) DOUBLE PRECISION array, */
- /* dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced */
- /* if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left */
- /* singular vector matrices of all subproblems at the bottom */
- /* level. */
- /* LDU (input) INTEGER, LDU = > N. */
- /* The leading dimension of arrays U, VT, DIFL, DIFR, POLES, */
- /* GIVNUM, and Z. */
- /* VT (output) DOUBLE PRECISION array, */
- /* dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced */
- /* if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right */
- /* singular vector matrices of all subproblems at the bottom */
- /* level. */
- /* K (output) INTEGER array, */
- /* dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. */
- /* If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th */
- /* secular equation on the computation tree. */
- /* DIFL (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ), */
- /* where NLVL = floor(log_2 (N/SMLSIZ))). */
- /* DIFR (output) DOUBLE PRECISION array, */
- /* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and */
- /* dimension ( N ) if ICOMPQ = 0. */
- /* If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) */
- /* record distances between singular values on the I-th */
- /* level and singular values on the (I -1)-th level, and */
- /* DIFR(1:N, 2 * I ) contains the normalizing factors for */
- /* the right singular vector matrix. See DLASD8 for details. */
- /* Z (output) DOUBLE PRECISION array, */
- /* dimension ( LDU, NLVL ) if ICOMPQ = 1 and */
- /* dimension ( N ) if ICOMPQ = 0. */
- /* The first K elements of Z(1, I) contain the components of */
- /* the deflation-adjusted updating row vector for subproblems */
- /* on the I-th level. */
- /* POLES (output) DOUBLE PRECISION array, */
- /* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced */
- /* if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and */
- /* POLES(1, 2*I) contain the new and old singular values */
- /* involved in the secular equations on the I-th level. */
- /* GIVPTR (output) INTEGER array, */
- /* dimension ( N ) if ICOMPQ = 1, and not referenced if */
- /* ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records */
- /* the number of Givens rotations performed on the I-th */
- /* problem on the computation tree. */
- /* GIVCOL (output) INTEGER array, */
- /* dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not */
- /* referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
- /* GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations */
- /* of Givens rotations performed on the I-th level on the */
- /* computation tree. */
- /* LDGCOL (input) INTEGER, LDGCOL = > N. */
- /* The leading dimension of arrays GIVCOL and PERM. */
- /* PERM (output) INTEGER array, */
- /* dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced */
- /* if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records */
- /* permutations done on the I-th level of the computation tree. */
- /* GIVNUM (output) DOUBLE PRECISION array, */
- /* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not */
- /* referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
- /* GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- */
- /* values of Givens rotations performed on the I-th level on */
- /* the computation tree. */
- /* C (output) DOUBLE PRECISION array, */
- /* dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. */
- /* If ICOMPQ = 1 and the I-th subproblem is not square, on exit, */
- /* C( I ) contains the C-value of a Givens rotation related to */
- /* the right null space of the I-th subproblem. */
- /* S (output) DOUBLE PRECISION array, dimension ( N ) if */
- /* ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 */
- /* and the I-th subproblem is not square, on exit, S( I ) */
- /* contains the S-value of a Givens rotation related to */
- /* the right null space of the I-th subproblem. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension */
- /* (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). */
- /* IWORK (workspace) INTEGER array. */
- /* Dimension must be at least (7 * N). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = 1, an singular value did not converge */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- givnum_dim1 = *ldu;
- givnum_offset = 1 + givnum_dim1;
- givnum -= givnum_offset;
- poles_dim1 = *ldu;
- poles_offset = 1 + poles_dim1;
- poles -= poles_offset;
- z_dim1 = *ldu;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- difr_dim1 = *ldu;
- difr_offset = 1 + difr_dim1;
- difr -= difr_offset;
- difl_dim1 = *ldu;
- difl_offset = 1 + difl_dim1;
- difl -= difl_offset;
- vt_dim1 = *ldu;
- vt_offset = 1 + vt_dim1;
- vt -= vt_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- --k;
- --givptr;
- perm_dim1 = *ldgcol;
- perm_offset = 1 + perm_dim1;
- perm -= perm_offset;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1;
- givcol -= givcol_offset;
- --c__;
- --s;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*smlsiz < 3) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -4;
- } else if (*ldu < *n + *sqre) {
- *info = -8;
- } else if (*ldgcol < *n) {
- *info = -17;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLASDA", &i__1);
- return 0;
- }
- m = *n + *sqre;
- /* If the input matrix is too small, call DLASDQ to find the SVD. */
- if (*n <= *smlsiz) {
- if (*icompq == 0) {
- _starpu_dlasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
- vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &
- work[1], info);
- } else {
- _starpu_dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
- , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1],
- info);
- }
- return 0;
- }
- /* Book-keeping and set up the computation tree. */
- inode = 1;
- ndiml = inode + *n;
- ndimr = ndiml + *n;
- idxq = ndimr + *n;
- iwk = idxq + *n;
- ncc = 0;
- nru = 0;
- smlszp = *smlsiz + 1;
- vf = 1;
- vl = vf + m;
- nwork1 = vl + m;
- nwork2 = nwork1 + smlszp * smlszp;
- _starpu_dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
- smlsiz);
- /* for the nodes on bottom level of the tree, solve */
- /* their subproblems by DLASDQ. */
- ndb1 = (nd + 1) / 2;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
- /* IC : center row of each node */
- /* NL : number of rows of left subproblem */
- /* NR : number of rows of right subproblem */
- /* NLF: starting row of the left subproblem */
- /* NRF: starting row of the right subproblem */
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nlp1 = nl + 1;
- nr = iwork[ndimr + i1];
- nlf = ic - nl;
- nrf = ic + 1;
- idxqi = idxq + nlf - 2;
- vfi = vf + nlf - 1;
- vli = vl + nlf - 1;
- sqrei = 1;
- if (*icompq == 0) {
- _starpu_dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
- _starpu_dlasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &
- work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2],
- &nl, &work[nwork2], info);
- itemp = nwork1 + nl * smlszp;
- _starpu_dcopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);
- _starpu_dcopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);
- } else {
- _starpu_dlaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu);
- _starpu_dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1],
- ldu);
- _starpu_dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &
- vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf +
- u_dim1], ldu, &work[nwork1], info);
- _starpu_dcopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);
- _starpu_dcopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)
- ;
- }
- if (*info != 0) {
- return 0;
- }
- i__2 = nl;
- for (j = 1; j <= i__2; ++j) {
- iwork[idxqi + j] = j;
- /* L10: */
- }
- if (i__ == nd && *sqre == 0) {
- sqrei = 0;
- } else {
- sqrei = 1;
- }
- idxqi += nlp1;
- vfi += nlp1;
- vli += nlp1;
- nrp1 = nr + sqrei;
- if (*icompq == 0) {
- _starpu_dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
- _starpu_dlasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &
- work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2],
- &nr, &work[nwork2], info);
- itemp = nwork1 + (nrp1 - 1) * smlszp;
- _starpu_dcopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);
- _starpu_dcopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);
- } else {
- _starpu_dlaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu);
- _starpu_dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1],
- ldu);
- _starpu_dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &
- vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf +
- u_dim1], ldu, &work[nwork1], info);
- _starpu_dcopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);
- _starpu_dcopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)
- ;
- }
- if (*info != 0) {
- return 0;
- }
- i__2 = nr;
- for (j = 1; j <= i__2; ++j) {
- iwork[idxqi + j] = j;
- /* L20: */
- }
- /* L30: */
- }
- /* Now conquer each subproblem bottom-up. */
- j = pow_ii(&c__2, &nlvl);
- for (lvl = nlvl; lvl >= 1; --lvl) {
- lvl2 = (lvl << 1) - 1;
- /* Find the first node LF and last node LL on */
- /* the current level LVL. */
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__1 = lvl - 1;
- lf = pow_ii(&c__2, &i__1);
- ll = (lf << 1) - 1;
- }
- i__1 = ll;
- for (i__ = lf; i__ <= i__1; ++i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- nrf = ic + 1;
- if (i__ == ll) {
- sqrei = *sqre;
- } else {
- sqrei = 1;
- }
- vfi = vf + nlf - 1;
- vli = vl + nlf - 1;
- idxqi = idxq + nlf - 1;
- alpha = d__[ic];
- beta = e[ic];
- if (*icompq == 0) {
- _starpu_dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
- work[vli], &alpha, &beta, &iwork[idxqi], &perm[
- perm_offset], &givptr[1], &givcol[givcol_offset],
- ldgcol, &givnum[givnum_offset], ldu, &poles[
- poles_offset], &difl[difl_offset], &difr[difr_offset],
- &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1],
- &iwork[iwk], info);
- } else {
- --j;
- _starpu_dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
- work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf +
- lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 *
- givcol_dim1], ldgcol, &givnum[nlf + lvl2 *
- givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &
- difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 *
- difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j],
- &s[j], &work[nwork1], &iwork[iwk], info);
- }
- if (*info != 0) {
- return 0;
- }
- /* L40: */
- }
- /* L50: */
- }
- return 0;
- /* End of DLASDA */
- } /* _starpu_dlasda_ */
|