123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- /* dlasd8.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c__0 = 0;
- static doublereal c_b8 = 1.;
- /* Subroutine */ int _starpu_dlasd8_(integer *icompq, integer *k, doublereal *d__,
- doublereal *z__, doublereal *vf, doublereal *vl, doublereal *difl,
- doublereal *difr, integer *lddifr, doublereal *dsigma, doublereal *
- work, integer *info)
- {
- /* System generated locals */
- integer difr_dim1, difr_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
- /* Local variables */
- integer i__, j;
- doublereal dj, rho;
- integer iwk1, iwk2, iwk3;
- extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- doublereal temp;
- extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
- integer iwk2i, iwk3i;
- doublereal diflj, difrj, dsigj;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- extern doublereal _starpu_dlamc3_(doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dlasd4_(integer *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *), _starpu_dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), _starpu_dlaset_(char *, integer *, integer
- *, doublereal *, doublereal *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- doublereal dsigjp;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* October 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLASD8 finds the square roots of the roots of the secular equation, */
- /* as defined by the values in DSIGMA and Z. It makes the appropriate */
- /* calls to DLASD4, and stores, for each element in D, the distance */
- /* to its two nearest poles (elements in DSIGMA). It also updates */
- /* the arrays VF and VL, the first and last components of all the */
- /* right singular vectors of the original bidiagonal matrix. */
- /* DLASD8 is called from DLASD6. */
- /* Arguments */
- /* ========= */
- /* ICOMPQ (input) INTEGER */
- /* Specifies whether singular vectors are to be computed in */
- /* factored form in the calling routine: */
- /* = 0: Compute singular values only. */
- /* = 1: Compute singular vectors in factored form as well. */
- /* K (input) INTEGER */
- /* The number of terms in the rational function to be solved */
- /* by DLASD4. K >= 1. */
- /* D (output) DOUBLE PRECISION array, dimension ( K ) */
- /* On output, D contains the updated singular values. */
- /* Z (input/output) DOUBLE PRECISION array, dimension ( K ) */
- /* On entry, the first K elements of this array contain the */
- /* components of the deflation-adjusted updating row vector. */
- /* On exit, Z is updated. */
- /* VF (input/output) DOUBLE PRECISION array, dimension ( K ) */
- /* On entry, VF contains information passed through DBEDE8. */
- /* On exit, VF contains the first K components of the first */
- /* components of all right singular vectors of the bidiagonal */
- /* matrix. */
- /* VL (input/output) DOUBLE PRECISION array, dimension ( K ) */
- /* On entry, VL contains information passed through DBEDE8. */
- /* On exit, VL contains the first K components of the last */
- /* components of all right singular vectors of the bidiagonal */
- /* matrix. */
- /* DIFL (output) DOUBLE PRECISION array, dimension ( K ) */
- /* On exit, DIFL(I) = D(I) - DSIGMA(I). */
- /* DIFR (output) DOUBLE PRECISION array, */
- /* dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */
- /* dimension ( K ) if ICOMPQ = 0. */
- /* On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */
- /* defined and will not be referenced. */
- /* If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
- /* normalizing factors for the right singular vector matrix. */
- /* LDDIFR (input) INTEGER */
- /* The leading dimension of DIFR, must be at least K. */
- /* DSIGMA (input/output) DOUBLE PRECISION array, dimension ( K ) */
- /* On entry, the first K elements of this array contain the old */
- /* roots of the deflated updating problem. These are the poles */
- /* of the secular equation. */
- /* On exit, the elements of DSIGMA may be very slightly altered */
- /* in value. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension at least 3 * K */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = 1, an singular value did not converge */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --z__;
- --vf;
- --vl;
- --difl;
- difr_dim1 = *lddifr;
- difr_offset = 1 + difr_dim1;
- difr -= difr_offset;
- --dsigma;
- --work;
- /* Function Body */
- *info = 0;
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*k < 1) {
- *info = -2;
- } else if (*lddifr < *k) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLASD8", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*k == 1) {
- d__[1] = abs(z__[1]);
- difl[1] = d__[1];
- if (*icompq == 1) {
- difl[2] = 1.;
- difr[(difr_dim1 << 1) + 1] = 1.;
- }
- return 0;
- }
- /* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
- /* be computed with high relative accuracy (barring over/underflow). */
- /* This is a problem on machines without a guard digit in */
- /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
- /* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
- /* which on any of these machines zeros out the bottommost */
- /* bit of DSIGMA(I) if it is 1; this makes the subsequent */
- /* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
- /* occurs. On binary machines with a guard digit (almost all */
- /* machines) it does not change DSIGMA(I) at all. On hexadecimal */
- /* and decimal machines with a guard digit, it slightly */
- /* changes the bottommost bits of DSIGMA(I). It does not account */
- /* for hexadecimal or decimal machines without guard digits */
- /* (we know of none). We use a subroutine call to compute */
- /* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
- /* this code. */
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dsigma[i__] = _starpu_dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
- /* L10: */
- }
- /* Book keeping. */
- iwk1 = 1;
- iwk2 = iwk1 + *k;
- iwk3 = iwk2 + *k;
- iwk2i = iwk2 - 1;
- iwk3i = iwk3 - 1;
- /* Normalize Z. */
- rho = _starpu_dnrm2_(k, &z__[1], &c__1);
- _starpu_dlascl_("G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info);
- rho *= rho;
- /* Initialize WORK(IWK3). */
- _starpu_dlaset_("A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k);
- /* Compute the updated singular values, the arrays DIFL, DIFR, */
- /* and the updated Z. */
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dlasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[
- iwk2], info);
- /* If the root finder fails, the computation is terminated. */
- if (*info != 0) {
- return 0;
- }
- work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];
- difl[j] = -work[j];
- difr[j + difr_dim1] = -work[j + 1];
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
- i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
- j]);
- /* L20: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
- i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
- j]);
- /* L30: */
- }
- /* L40: */
- }
- /* Compute updated Z. */
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__2 = sqrt((d__1 = work[iwk3i + i__], abs(d__1)));
- z__[i__] = d_sign(&d__2, &z__[i__]);
- /* L50: */
- }
- /* Update VF and VL. */
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- diflj = difl[j];
- dj = d__[j];
- dsigj = -dsigma[j];
- if (j < *k) {
- difrj = -difr[j + difr_dim1];
- dsigjp = -dsigma[j + 1];
- }
- work[j] = -z__[j] / diflj / (dsigma[j] + dj);
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__] = z__[i__] / (_starpu_dlamc3_(&dsigma[i__], &dsigj) - diflj) / (
- dsigma[i__] + dj);
- /* L60: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- work[i__] = z__[i__] / (_starpu_dlamc3_(&dsigma[i__], &dsigjp) + difrj) /
- (dsigma[i__] + dj);
- /* L70: */
- }
- temp = _starpu_dnrm2_(k, &work[1], &c__1);
- work[iwk2i + j] = _starpu_ddot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;
- work[iwk3i + j] = _starpu_ddot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;
- if (*icompq == 1) {
- difr[j + (difr_dim1 << 1)] = temp;
- }
- /* L80: */
- }
- _starpu_dcopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);
- _starpu_dcopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);
- return 0;
- /* End of DLASD8 */
- } /* _starpu_dlasd8_ */
|