123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519 |
- /* dlasd7.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dlasd7_(integer *icompq, integer *nl, integer *nr,
- integer *sqre, integer *k, doublereal *d__, doublereal *z__,
- doublereal *zw, doublereal *vf, doublereal *vfw, doublereal *vl,
- doublereal *vlw, doublereal *alpha, doublereal *beta, doublereal *
- dsigma, integer *idx, integer *idxp, integer *idxq, integer *perm,
- integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum,
- integer *ldgnum, doublereal *c__, doublereal *s, integer *info)
- {
- /* System generated locals */
- integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
- doublereal d__1, d__2;
- /* Local variables */
- integer i__, j, m, n, k2;
- doublereal z1;
- integer jp;
- doublereal eps, tau, tol;
- integer nlp1, nlp2, idxi, idxj;
- extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- integer idxjp;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer jprev;
- extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), _starpu_xerbla_(char *, integer *);
- doublereal hlftol;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLASD7 merges the two sets of singular values together into a single */
- /* sorted set. Then it tries to deflate the size of the problem. There */
- /* are two ways in which deflation can occur: when two or more singular */
- /* values are close together or if there is a tiny entry in the Z */
- /* vector. For each such occurrence the order of the related */
- /* secular equation problem is reduced by one. */
- /* DLASD7 is called from DLASD6. */
- /* Arguments */
- /* ========= */
- /* ICOMPQ (input) INTEGER */
- /* Specifies whether singular vectors are to be computed */
- /* in compact form, as follows: */
- /* = 0: Compute singular values only. */
- /* = 1: Compute singular vectors of upper */
- /* bidiagonal matrix in compact form. */
- /* NL (input) INTEGER */
- /* The row dimension of the upper block. NL >= 1. */
- /* NR (input) INTEGER */
- /* The row dimension of the lower block. NR >= 1. */
- /* SQRE (input) INTEGER */
- /* = 0: the lower block is an NR-by-NR square matrix. */
- /* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
- /* The bidiagonal matrix has */
- /* N = NL + NR + 1 rows and */
- /* M = N + SQRE >= N columns. */
- /* K (output) INTEGER */
- /* Contains the dimension of the non-deflated matrix, this is */
- /* the order of the related secular equation. 1 <= K <=N. */
- /* D (input/output) DOUBLE PRECISION array, dimension ( N ) */
- /* On entry D contains the singular values of the two submatrices */
- /* to be combined. On exit D contains the trailing (N-K) updated */
- /* singular values (those which were deflated) sorted into */
- /* increasing order. */
- /* Z (output) DOUBLE PRECISION array, dimension ( M ) */
- /* On exit Z contains the updating row vector in the secular */
- /* equation. */
- /* ZW (workspace) DOUBLE PRECISION array, dimension ( M ) */
- /* Workspace for Z. */
- /* VF (input/output) DOUBLE PRECISION array, dimension ( M ) */
- /* On entry, VF(1:NL+1) contains the first components of all */
- /* right singular vectors of the upper block; and VF(NL+2:M) */
- /* contains the first components of all right singular vectors */
- /* of the lower block. On exit, VF contains the first components */
- /* of all right singular vectors of the bidiagonal matrix. */
- /* VFW (workspace) DOUBLE PRECISION array, dimension ( M ) */
- /* Workspace for VF. */
- /* VL (input/output) DOUBLE PRECISION array, dimension ( M ) */
- /* On entry, VL(1:NL+1) contains the last components of all */
- /* right singular vectors of the upper block; and VL(NL+2:M) */
- /* contains the last components of all right singular vectors */
- /* of the lower block. On exit, VL contains the last components */
- /* of all right singular vectors of the bidiagonal matrix. */
- /* VLW (workspace) DOUBLE PRECISION array, dimension ( M ) */
- /* Workspace for VL. */
- /* ALPHA (input) DOUBLE PRECISION */
- /* Contains the diagonal element associated with the added row. */
- /* BETA (input) DOUBLE PRECISION */
- /* Contains the off-diagonal element associated with the added */
- /* row. */
- /* DSIGMA (output) DOUBLE PRECISION array, dimension ( N ) */
- /* Contains a copy of the diagonal elements (K-1 singular values */
- /* and one zero) in the secular equation. */
- /* IDX (workspace) INTEGER array, dimension ( N ) */
- /* This will contain the permutation used to sort the contents of */
- /* D into ascending order. */
- /* IDXP (workspace) INTEGER array, dimension ( N ) */
- /* This will contain the permutation used to place deflated */
- /* values of D at the end of the array. On output IDXP(2:K) */
- /* points to the nondeflated D-values and IDXP(K+1:N) */
- /* points to the deflated singular values. */
- /* IDXQ (input) INTEGER array, dimension ( N ) */
- /* This contains the permutation which separately sorts the two */
- /* sub-problems in D into ascending order. Note that entries in */
- /* the first half of this permutation must first be moved one */
- /* position backward; and entries in the second half */
- /* must first have NL+1 added to their values. */
- /* PERM (output) INTEGER array, dimension ( N ) */
- /* The permutations (from deflation and sorting) to be applied */
- /* to each singular block. Not referenced if ICOMPQ = 0. */
- /* GIVPTR (output) INTEGER */
- /* The number of Givens rotations which took place in this */
- /* subproblem. Not referenced if ICOMPQ = 0. */
- /* GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) */
- /* Each pair of numbers indicates a pair of columns to take place */
- /* in a Givens rotation. Not referenced if ICOMPQ = 0. */
- /* LDGCOL (input) INTEGER */
- /* The leading dimension of GIVCOL, must be at least N. */
- /* GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
- /* Each number indicates the C or S value to be used in the */
- /* corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
- /* LDGNUM (input) INTEGER */
- /* The leading dimension of GIVNUM, must be at least N. */
- /* C (output) DOUBLE PRECISION */
- /* C contains garbage if SQRE =0 and the C-value of a Givens */
- /* rotation related to the right null space if SQRE = 1. */
- /* S (output) DOUBLE PRECISION */
- /* S contains garbage if SQRE =0 and the S-value of a Givens */
- /* rotation related to the right null space if SQRE = 1. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --z__;
- --zw;
- --vf;
- --vfw;
- --vl;
- --vlw;
- --dsigma;
- --idx;
- --idxp;
- --idxq;
- --perm;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1;
- givcol -= givcol_offset;
- givnum_dim1 = *ldgnum;
- givnum_offset = 1 + givnum_dim1;
- givnum -= givnum_offset;
- /* Function Body */
- *info = 0;
- n = *nl + *nr + 1;
- m = n + *sqre;
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*nl < 1) {
- *info = -2;
- } else if (*nr < 1) {
- *info = -3;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -4;
- } else if (*ldgcol < n) {
- *info = -22;
- } else if (*ldgnum < n) {
- *info = -24;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLASD7", &i__1);
- return 0;
- }
- nlp1 = *nl + 1;
- nlp2 = *nl + 2;
- if (*icompq == 1) {
- *givptr = 0;
- }
- /* Generate the first part of the vector Z and move the singular */
- /* values in the first part of D one position backward. */
- z1 = *alpha * vl[nlp1];
- vl[nlp1] = 0.;
- tau = vf[nlp1];
- for (i__ = *nl; i__ >= 1; --i__) {
- z__[i__ + 1] = *alpha * vl[i__];
- vl[i__] = 0.;
- vf[i__ + 1] = vf[i__];
- d__[i__ + 1] = d__[i__];
- idxq[i__ + 1] = idxq[i__] + 1;
- /* L10: */
- }
- vf[1] = tau;
- /* Generate the second part of the vector Z. */
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- z__[i__] = *beta * vf[i__];
- vf[i__] = 0.;
- /* L20: */
- }
- /* Sort the singular values into increasing order */
- i__1 = n;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- idxq[i__] += nlp1;
- /* L30: */
- }
- /* DSIGMA, IDXC, IDXC, and ZW are used as storage space. */
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- dsigma[i__] = d__[idxq[i__]];
- zw[i__] = z__[idxq[i__]];
- vfw[i__] = vf[idxq[i__]];
- vlw[i__] = vl[idxq[i__]];
- /* L40: */
- }
- _starpu_dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- idxi = idx[i__] + 1;
- d__[i__] = dsigma[idxi];
- z__[i__] = zw[idxi];
- vf[i__] = vfw[idxi];
- vl[i__] = vlw[idxi];
- /* L50: */
- }
- /* Calculate the allowable deflation tolerence */
- eps = _starpu_dlamch_("Epsilon");
- /* Computing MAX */
- d__1 = abs(*alpha), d__2 = abs(*beta);
- tol = max(d__1,d__2);
- /* Computing MAX */
- d__2 = (d__1 = d__[n], abs(d__1));
- tol = eps * 64. * max(d__2,tol);
- /* There are 2 kinds of deflation -- first a value in the z-vector */
- /* is small, second two (or more) singular values are very close */
- /* together (their difference is small). */
- /* If the value in the z-vector is small, we simply permute the */
- /* array so that the corresponding singular value is moved to the */
- /* end. */
- /* If two values in the D-vector are close, we perform a two-sided */
- /* rotation designed to make one of the corresponding z-vector */
- /* entries zero, and then permute the array so that the deflated */
- /* singular value is moved to the end. */
- /* If there are multiple singular values then the problem deflates. */
- /* Here the number of equal singular values are found. As each equal */
- /* singular value is found, an elementary reflector is computed to */
- /* rotate the corresponding singular subspace so that the */
- /* corresponding components of Z are zero in this new basis. */
- *k = 1;
- k2 = n + 1;
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- if ((d__1 = z__[j], abs(d__1)) <= tol) {
- /* Deflate due to small z component. */
- --k2;
- idxp[k2] = j;
- if (j == n) {
- goto L100;
- }
- } else {
- jprev = j;
- goto L70;
- }
- /* L60: */
- }
- L70:
- j = jprev;
- L80:
- ++j;
- if (j > n) {
- goto L90;
- }
- if ((d__1 = z__[j], abs(d__1)) <= tol) {
- /* Deflate due to small z component. */
- --k2;
- idxp[k2] = j;
- } else {
- /* Check if singular values are close enough to allow deflation. */
- if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
- /* Deflation is possible. */
- *s = z__[jprev];
- *c__ = z__[j];
- /* Find sqrt(a**2+b**2) without overflow or */
- /* destructive underflow. */
- tau = _starpu_dlapy2_(c__, s);
- z__[j] = tau;
- z__[jprev] = 0.;
- *c__ /= tau;
- *s = -(*s) / tau;
- /* Record the appropriate Givens rotation */
- if (*icompq == 1) {
- ++(*givptr);
- idxjp = idxq[idx[jprev] + 1];
- idxj = idxq[idx[j] + 1];
- if (idxjp <= nlp1) {
- --idxjp;
- }
- if (idxj <= nlp1) {
- --idxj;
- }
- givcol[*givptr + (givcol_dim1 << 1)] = idxjp;
- givcol[*givptr + givcol_dim1] = idxj;
- givnum[*givptr + (givnum_dim1 << 1)] = *c__;
- givnum[*givptr + givnum_dim1] = *s;
- }
- _starpu_drot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
- _starpu_drot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
- --k2;
- idxp[k2] = jprev;
- jprev = j;
- } else {
- ++(*k);
- zw[*k] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
- jprev = j;
- }
- }
- goto L80;
- L90:
- /* Record the last singular value. */
- ++(*k);
- zw[*k] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
- L100:
- /* Sort the singular values into DSIGMA. The singular values which */
- /* were not deflated go into the first K slots of DSIGMA, except */
- /* that DSIGMA(1) is treated separately. */
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- dsigma[j] = d__[jp];
- vfw[j] = vf[jp];
- vlw[j] = vl[jp];
- /* L110: */
- }
- if (*icompq == 1) {
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- perm[j] = idxq[idx[jp] + 1];
- if (perm[j] <= nlp1) {
- --perm[j];
- }
- /* L120: */
- }
- }
- /* The deflated singular values go back into the last N - K slots of */
- /* D. */
- i__1 = n - *k;
- _starpu_dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
- /* Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */
- /* VL(M). */
- dsigma[1] = 0.;
- hlftol = tol / 2.;
- if (abs(dsigma[2]) <= hlftol) {
- dsigma[2] = hlftol;
- }
- if (m > n) {
- z__[1] = _starpu_dlapy2_(&z1, &z__[m]);
- if (z__[1] <= tol) {
- *c__ = 1.;
- *s = 0.;
- z__[1] = tol;
- } else {
- *c__ = z1 / z__[1];
- *s = -z__[m] / z__[1];
- }
- _starpu_drot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
- _starpu_drot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
- } else {
- if (abs(z1) <= tol) {
- z__[1] = tol;
- } else {
- z__[1] = z1;
- }
- }
- /* Restore Z, VF, and VL. */
- i__1 = *k - 1;
- _starpu_dcopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
- i__1 = n - 1;
- _starpu_dcopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
- i__1 = n - 1;
- _starpu_dcopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);
- return 0;
- /* End of DLASD7 */
- } /* _starpu_dlasd7_ */
|