123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- /* dlasd6.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__0 = 0;
- static doublereal c_b7 = 1.;
- static integer c__1 = 1;
- static integer c_n1 = -1;
- /* Subroutine */ int _starpu_dlasd6_(integer *icompq, integer *nl, integer *nr,
- integer *sqre, doublereal *d__, doublereal *vf, doublereal *vl,
- doublereal *alpha, doublereal *beta, integer *idxq, integer *perm,
- integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum,
- integer *ldgnum, doublereal *poles, doublereal *difl, doublereal *
- difr, doublereal *z__, integer *k, doublereal *c__, doublereal *s,
- doublereal *work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset,
- poles_dim1, poles_offset, i__1;
- doublereal d__1, d__2;
- /* Local variables */
- integer i__, m, n, n1, n2, iw, idx, idxc, idxp, ivfw, ivlw;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlasd7_(integer *, integer *, integer *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- integer *, integer *, integer *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, integer *), _starpu_dlasd8_(
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), _starpu_dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), _starpu_dlamrg_(integer *, integer *,
- doublereal *, integer *, integer *, integer *);
- integer isigma;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal orgnrm;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLASD6 computes the SVD of an updated upper bidiagonal matrix B */
- /* obtained by merging two smaller ones by appending a row. This */
- /* routine is used only for the problem which requires all singular */
- /* values and optionally singular vector matrices in factored form. */
- /* B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE. */
- /* A related subroutine, DLASD1, handles the case in which all singular */
- /* values and singular vectors of the bidiagonal matrix are desired. */
- /* DLASD6 computes the SVD as follows: */
- /* ( D1(in) 0 0 0 ) */
- /* B = U(in) * ( Z1' a Z2' b ) * VT(in) */
- /* ( 0 0 D2(in) 0 ) */
- /* = U(out) * ( D(out) 0) * VT(out) */
- /* where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M */
- /* with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
- /* elsewhere; and the entry b is empty if SQRE = 0. */
- /* The singular values of B can be computed using D1, D2, the first */
- /* components of all the right singular vectors of the lower block, and */
- /* the last components of all the right singular vectors of the upper */
- /* block. These components are stored and updated in VF and VL, */
- /* respectively, in DLASD6. Hence U and VT are not explicitly */
- /* referenced. */
- /* The singular values are stored in D. The algorithm consists of two */
- /* stages: */
- /* The first stage consists of deflating the size of the problem */
- /* when there are multiple singular values or if there is a zero */
- /* in the Z vector. For each such occurence the dimension of the */
- /* secular equation problem is reduced by one. This stage is */
- /* performed by the routine DLASD7. */
- /* The second stage consists of calculating the updated */
- /* singular values. This is done by finding the roots of the */
- /* secular equation via the routine DLASD4 (as called by DLASD8). */
- /* This routine also updates VF and VL and computes the distances */
- /* between the updated singular values and the old singular */
- /* values. */
- /* DLASD6 is called from DLASDA. */
- /* Arguments */
- /* ========= */
- /* ICOMPQ (input) INTEGER */
- /* Specifies whether singular vectors are to be computed in */
- /* factored form: */
- /* = 0: Compute singular values only. */
- /* = 1: Compute singular vectors in factored form as well. */
- /* NL (input) INTEGER */
- /* The row dimension of the upper block. NL >= 1. */
- /* NR (input) INTEGER */
- /* The row dimension of the lower block. NR >= 1. */
- /* SQRE (input) INTEGER */
- /* = 0: the lower block is an NR-by-NR square matrix. */
- /* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
- /* The bidiagonal matrix has row dimension N = NL + NR + 1, */
- /* and column dimension M = N + SQRE. */
- /* D (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ). */
- /* On entry D(1:NL,1:NL) contains the singular values of the */
- /* upper block, and D(NL+2:N) contains the singular values */
- /* of the lower block. On exit D(1:N) contains the singular */
- /* values of the modified matrix. */
- /* VF (input/output) DOUBLE PRECISION array, dimension ( M ) */
- /* On entry, VF(1:NL+1) contains the first components of all */
- /* right singular vectors of the upper block; and VF(NL+2:M) */
- /* contains the first components of all right singular vectors */
- /* of the lower block. On exit, VF contains the first components */
- /* of all right singular vectors of the bidiagonal matrix. */
- /* VL (input/output) DOUBLE PRECISION array, dimension ( M ) */
- /* On entry, VL(1:NL+1) contains the last components of all */
- /* right singular vectors of the upper block; and VL(NL+2:M) */
- /* contains the last components of all right singular vectors of */
- /* the lower block. On exit, VL contains the last components of */
- /* all right singular vectors of the bidiagonal matrix. */
- /* ALPHA (input/output) DOUBLE PRECISION */
- /* Contains the diagonal element associated with the added row. */
- /* BETA (input/output) DOUBLE PRECISION */
- /* Contains the off-diagonal element associated with the added */
- /* row. */
- /* IDXQ (output) INTEGER array, dimension ( N ) */
- /* This contains the permutation which will reintegrate the */
- /* subproblem just solved back into sorted order, i.e. */
- /* D( IDXQ( I = 1, N ) ) will be in ascending order. */
- /* PERM (output) INTEGER array, dimension ( N ) */
- /* The permutations (from deflation and sorting) to be applied */
- /* to each block. Not referenced if ICOMPQ = 0. */
- /* GIVPTR (output) INTEGER */
- /* The number of Givens rotations which took place in this */
- /* subproblem. Not referenced if ICOMPQ = 0. */
- /* GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) */
- /* Each pair of numbers indicates a pair of columns to take place */
- /* in a Givens rotation. Not referenced if ICOMPQ = 0. */
- /* LDGCOL (input) INTEGER */
- /* leading dimension of GIVCOL, must be at least N. */
- /* GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
- /* Each number indicates the C or S value to be used in the */
- /* corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
- /* LDGNUM (input) INTEGER */
- /* The leading dimension of GIVNUM and POLES, must be at least N. */
- /* POLES (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
- /* On exit, POLES(1,*) is an array containing the new singular */
- /* values obtained from solving the secular equation, and */
- /* POLES(2,*) is an array containing the poles in the secular */
- /* equation. Not referenced if ICOMPQ = 0. */
- /* DIFL (output) DOUBLE PRECISION array, dimension ( N ) */
- /* On exit, DIFL(I) is the distance between I-th updated */
- /* (undeflated) singular value and the I-th (undeflated) old */
- /* singular value. */
- /* DIFR (output) DOUBLE PRECISION array, */
- /* dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and */
- /* dimension ( N ) if ICOMPQ = 0. */
- /* On exit, DIFR(I, 1) is the distance between I-th updated */
- /* (undeflated) singular value and the I+1-th (undeflated) old */
- /* singular value. */
- /* If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
- /* normalizing factors for the right singular vector matrix. */
- /* See DLASD8 for details on DIFL and DIFR. */
- /* Z (output) DOUBLE PRECISION array, dimension ( M ) */
- /* The first elements of this array contain the components */
- /* of the deflation-adjusted updating row vector. */
- /* K (output) INTEGER */
- /* Contains the dimension of the non-deflated matrix, */
- /* This is the order of the related secular equation. 1 <= K <=N. */
- /* C (output) DOUBLE PRECISION */
- /* C contains garbage if SQRE =0 and the C-value of a Givens */
- /* rotation related to the right null space if SQRE = 1. */
- /* S (output) DOUBLE PRECISION */
- /* S contains garbage if SQRE =0 and the S-value of a Givens */
- /* rotation related to the right null space if SQRE = 1. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension ( 4 * M ) */
- /* IWORK (workspace) INTEGER array, dimension ( 3 * N ) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = 1, an singular value did not converge */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --vf;
- --vl;
- --idxq;
- --perm;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1;
- givcol -= givcol_offset;
- poles_dim1 = *ldgnum;
- poles_offset = 1 + poles_dim1;
- poles -= poles_offset;
- givnum_dim1 = *ldgnum;
- givnum_offset = 1 + givnum_dim1;
- givnum -= givnum_offset;
- --difl;
- --difr;
- --z__;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- n = *nl + *nr + 1;
- m = n + *sqre;
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*nl < 1) {
- *info = -2;
- } else if (*nr < 1) {
- *info = -3;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -4;
- } else if (*ldgcol < n) {
- *info = -14;
- } else if (*ldgnum < n) {
- *info = -16;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLASD6", &i__1);
- return 0;
- }
- /* The following values are for bookkeeping purposes only. They are */
- /* integer pointers which indicate the portion of the workspace */
- /* used by a particular array in DLASD7 and DLASD8. */
- isigma = 1;
- iw = isigma + n;
- ivfw = iw + m;
- ivlw = ivfw + m;
- idx = 1;
- idxc = idx + n;
- idxp = idxc + n;
- /* Scale. */
- /* Computing MAX */
- d__1 = abs(*alpha), d__2 = abs(*beta);
- orgnrm = max(d__1,d__2);
- d__[*nl + 1] = 0.;
- i__1 = n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
- orgnrm = (d__1 = d__[i__], abs(d__1));
- }
- /* L10: */
- }
- _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
- *alpha /= orgnrm;
- *beta /= orgnrm;
- /* Sort and Deflate singular values. */
- _starpu_dlasd7_(icompq, nl, nr, sqre, k, &d__[1], &z__[1], &work[iw], &vf[1], &
- work[ivfw], &vl[1], &work[ivlw], alpha, beta, &work[isigma], &
- iwork[idx], &iwork[idxp], &idxq[1], &perm[1], givptr, &givcol[
- givcol_offset], ldgcol, &givnum[givnum_offset], ldgnum, c__, s,
- info);
- /* Solve Secular Equation, compute DIFL, DIFR, and update VF, VL. */
- _starpu_dlasd8_(icompq, k, &d__[1], &z__[1], &vf[1], &vl[1], &difl[1], &difr[1],
- ldgnum, &work[isigma], &work[iw], info);
- /* Save the poles if ICOMPQ = 1. */
- if (*icompq == 1) {
- _starpu_dcopy_(k, &d__[1], &c__1, &poles[poles_dim1 + 1], &c__1);
- _starpu_dcopy_(k, &work[isigma], &c__1, &poles[(poles_dim1 << 1) + 1], &c__1);
- }
- /* Unscale. */
- _starpu_dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);
- /* Prepare the IDXQ sorting permutation. */
- n1 = *k;
- n2 = n - *k;
- _starpu_dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
- return 0;
- /* End of DLASD6 */
- } /* _starpu_dlasd6_ */
|