123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- /* dlasd5.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dlasd5_(integer *i__, doublereal *d__, doublereal *z__,
- doublereal *delta, doublereal *rho, doublereal *dsigma, doublereal *
- work)
- {
- /* System generated locals */
- doublereal d__1;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- doublereal b, c__, w, del, tau, delsq;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* This subroutine computes the square root of the I-th eigenvalue */
- /* of a positive symmetric rank-one modification of a 2-by-2 diagonal */
- /* matrix */
- /* diag( D ) * diag( D ) + RHO * Z * transpose(Z) . */
- /* The diagonal entries in the array D are assumed to satisfy */
- /* 0 <= D(i) < D(j) for i < j . */
- /* We also assume RHO > 0 and that the Euclidean norm of the vector */
- /* Z is one. */
- /* Arguments */
- /* ========= */
- /* I (input) INTEGER */
- /* The index of the eigenvalue to be computed. I = 1 or I = 2. */
- /* D (input) DOUBLE PRECISION array, dimension ( 2 ) */
- /* The original eigenvalues. We assume 0 <= D(1) < D(2). */
- /* Z (input) DOUBLE PRECISION array, dimension ( 2 ) */
- /* The components of the updating vector. */
- /* DELTA (output) DOUBLE PRECISION array, dimension ( 2 ) */
- /* Contains (D(j) - sigma_I) in its j-th component. */
- /* The vector DELTA contains the information necessary */
- /* to construct the eigenvectors. */
- /* RHO (input) DOUBLE PRECISION */
- /* The scalar in the symmetric updating formula. */
- /* DSIGMA (output) DOUBLE PRECISION */
- /* The computed sigma_I, the I-th updated eigenvalue. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension ( 2 ) */
- /* WORK contains (D(j) + sigma_I) in its j-th component. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ren-Cang Li, Computer Science Division, University of California */
- /* at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --work;
- --delta;
- --z__;
- --d__;
- /* Function Body */
- del = d__[2] - d__[1];
- delsq = del * (d__[2] + d__[1]);
- if (*i__ == 1) {
- w = *rho * 4. * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.) - z__[1] *
- z__[1] / (d__[1] * 3. + d__[2])) / del + 1.;
- if (w > 0.) {
- b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
- c__ = *rho * z__[1] * z__[1] * delsq;
- /* B > ZERO, always */
- /* The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 ) */
- tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1))));
- /* The following TAU is DSIGMA - D( 1 ) */
- tau /= d__[1] + sqrt(d__[1] * d__[1] + tau);
- *dsigma = d__[1] + tau;
- delta[1] = -tau;
- delta[2] = del - tau;
- work[1] = d__[1] * 2. + tau;
- work[2] = d__[1] + tau + d__[2];
- /* DELTA( 1 ) = -Z( 1 ) / TAU */
- /* DELTA( 2 ) = Z( 2 ) / ( DEL-TAU ) */
- } else {
- b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
- c__ = *rho * z__[2] * z__[2] * delsq;
- /* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
- if (b > 0.) {
- tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.));
- } else {
- tau = (b - sqrt(b * b + c__ * 4.)) / 2.;
- }
- /* The following TAU is DSIGMA - D( 2 ) */
- tau /= d__[2] + sqrt((d__1 = d__[2] * d__[2] + tau, abs(d__1)));
- *dsigma = d__[2] + tau;
- delta[1] = -(del + tau);
- delta[2] = -tau;
- work[1] = d__[1] + tau + d__[2];
- work[2] = d__[2] * 2. + tau;
- /* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */
- /* DELTA( 2 ) = -Z( 2 ) / TAU */
- }
- /* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */
- /* DELTA( 1 ) = DELTA( 1 ) / TEMP */
- /* DELTA( 2 ) = DELTA( 2 ) / TEMP */
- } else {
- /* Now I=2 */
- b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
- c__ = *rho * z__[2] * z__[2] * delsq;
- /* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
- if (b > 0.) {
- tau = (b + sqrt(b * b + c__ * 4.)) / 2.;
- } else {
- tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.));
- }
- /* The following TAU is DSIGMA - D( 2 ) */
- tau /= d__[2] + sqrt(d__[2] * d__[2] + tau);
- *dsigma = d__[2] + tau;
- delta[1] = -(del + tau);
- delta[2] = -tau;
- work[1] = d__[1] + tau + d__[2];
- work[2] = d__[2] * 2. + tau;
- /* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */
- /* DELTA( 2 ) = -Z( 2 ) / TAU */
- /* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */
- /* DELTA( 1 ) = DELTA( 1 ) / TEMP */
- /* DELTA( 2 ) = DELTA( 2 ) / TEMP */
- }
- return 0;
- /* End of DLASD5 */
- } /* _starpu_dlasd5_ */
|