123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- /* dlasd3.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c__0 = 0;
- static doublereal c_b13 = 1.;
- static doublereal c_b26 = 0.;
- /* Subroutine */ int _starpu_dlasd3_(integer *nl, integer *nr, integer *sqre, integer
- *k, doublereal *d__, doublereal *q, integer *ldq, doublereal *dsigma,
- doublereal *u, integer *ldu, doublereal *u2, integer *ldu2,
- doublereal *vt, integer *ldvt, doublereal *vt2, integer *ldvt2,
- integer *idxc, integer *ctot, doublereal *z__, integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1,
- vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
- /* Local variables */
- integer i__, j, m, n, jc;
- doublereal rho;
- integer nlp1, nlp2, nrp1;
- doublereal temp;
- extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer ctemp;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer ktemp;
- extern doublereal _starpu_dlamc3_(doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dlasd4_(integer *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *), _starpu_dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), _starpu_dlacpy_(char *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLASD3 finds all the square roots of the roots of the secular */
- /* equation, as defined by the values in D and Z. It makes the */
- /* appropriate calls to DLASD4 and then updates the singular */
- /* vectors by matrix multiplication. */
- /* This code makes very mild assumptions about floating point */
- /* arithmetic. It will work on machines with a guard digit in */
- /* add/subtract, or on those binary machines without guard digits */
- /* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
- /* It could conceivably fail on hexadecimal or decimal machines */
- /* without guard digits, but we know of none. */
- /* DLASD3 is called from DLASD1. */
- /* Arguments */
- /* ========= */
- /* NL (input) INTEGER */
- /* The row dimension of the upper block. NL >= 1. */
- /* NR (input) INTEGER */
- /* The row dimension of the lower block. NR >= 1. */
- /* SQRE (input) INTEGER */
- /* = 0: the lower block is an NR-by-NR square matrix. */
- /* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
- /* The bidiagonal matrix has N = NL + NR + 1 rows and */
- /* M = N + SQRE >= N columns. */
- /* K (input) INTEGER */
- /* The size of the secular equation, 1 =< K = < N. */
- /* D (output) DOUBLE PRECISION array, dimension(K) */
- /* On exit the square roots of the roots of the secular equation, */
- /* in ascending order. */
- /* Q (workspace) DOUBLE PRECISION array, */
- /* dimension at least (LDQ,K). */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= K. */
- /* DSIGMA (input) DOUBLE PRECISION array, dimension(K) */
- /* The first K elements of this array contain the old roots */
- /* of the deflated updating problem. These are the poles */
- /* of the secular equation. */
- /* U (output) DOUBLE PRECISION array, dimension (LDU, N) */
- /* The last N - K columns of this matrix contain the deflated */
- /* left singular vectors. */
- /* LDU (input) INTEGER */
- /* The leading dimension of the array U. LDU >= N. */
- /* U2 (input/output) DOUBLE PRECISION array, dimension (LDU2, N) */
- /* The first K columns of this matrix contain the non-deflated */
- /* left singular vectors for the split problem. */
- /* LDU2 (input) INTEGER */
- /* The leading dimension of the array U2. LDU2 >= N. */
- /* VT (output) DOUBLE PRECISION array, dimension (LDVT, M) */
- /* The last M - K columns of VT' contain the deflated */
- /* right singular vectors. */
- /* LDVT (input) INTEGER */
- /* The leading dimension of the array VT. LDVT >= N. */
- /* VT2 (input/output) DOUBLE PRECISION array, dimension (LDVT2, N) */
- /* The first K columns of VT2' contain the non-deflated */
- /* right singular vectors for the split problem. */
- /* LDVT2 (input) INTEGER */
- /* The leading dimension of the array VT2. LDVT2 >= N. */
- /* IDXC (input) INTEGER array, dimension ( N ) */
- /* The permutation used to arrange the columns of U (and rows of */
- /* VT) into three groups: the first group contains non-zero */
- /* entries only at and above (or before) NL +1; the second */
- /* contains non-zero entries only at and below (or after) NL+2; */
- /* and the third is dense. The first column of U and the row of */
- /* VT are treated separately, however. */
- /* The rows of the singular vectors found by DLASD4 */
- /* must be likewise permuted before the matrix multiplies can */
- /* take place. */
- /* CTOT (input) INTEGER array, dimension ( 4 ) */
- /* A count of the total number of the various types of columns */
- /* in U (or rows in VT), as described in IDXC. The fourth column */
- /* type is any column which has been deflated. */
- /* Z (input) DOUBLE PRECISION array, dimension (K) */
- /* The first K elements of this array contain the components */
- /* of the deflation-adjusted updating row vector. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = 1, an singular value did not converge */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --dsigma;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- u2_dim1 = *ldu2;
- u2_offset = 1 + u2_dim1;
- u2 -= u2_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1;
- vt -= vt_offset;
- vt2_dim1 = *ldvt2;
- vt2_offset = 1 + vt2_dim1;
- vt2 -= vt2_offset;
- --idxc;
- --ctot;
- --z__;
- /* Function Body */
- *info = 0;
- if (*nl < 1) {
- *info = -1;
- } else if (*nr < 1) {
- *info = -2;
- } else if (*sqre != 1 && *sqre != 0) {
- *info = -3;
- }
- n = *nl + *nr + 1;
- m = n + *sqre;
- nlp1 = *nl + 1;
- nlp2 = *nl + 2;
- if (*k < 1 || *k > n) {
- *info = -4;
- } else if (*ldq < *k) {
- *info = -7;
- } else if (*ldu < n) {
- *info = -10;
- } else if (*ldu2 < n) {
- *info = -12;
- } else if (*ldvt < m) {
- *info = -14;
- } else if (*ldvt2 < m) {
- *info = -16;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLASD3", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*k == 1) {
- d__[1] = abs(z__[1]);
- _starpu_dcopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
- if (z__[1] > 0.) {
- _starpu_dcopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
- } else {
- i__1 = n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- u[i__ + u_dim1] = -u2[i__ + u2_dim1];
- /* L10: */
- }
- }
- return 0;
- }
- /* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
- /* be computed with high relative accuracy (barring over/underflow). */
- /* This is a problem on machines without a guard digit in */
- /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
- /* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
- /* which on any of these machines zeros out the bottommost */
- /* bit of DSIGMA(I) if it is 1; this makes the subsequent */
- /* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
- /* occurs. On binary machines with a guard digit (almost all */
- /* machines) it does not change DSIGMA(I) at all. On hexadecimal */
- /* and decimal machines with a guard digit, it slightly */
- /* changes the bottommost bits of DSIGMA(I). It does not account */
- /* for hexadecimal or decimal machines without guard digits */
- /* (we know of none). We use a subroutine call to compute */
- /* 2*DSIGMA(I) to prevent optimizing compilers from eliminating */
- /* this code. */
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dsigma[i__] = _starpu_dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
- /* L20: */
- }
- /* Keep a copy of Z. */
- _starpu_dcopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);
- /* Normalize Z. */
- rho = _starpu_dnrm2_(k, &z__[1], &c__1);
- _starpu_dlascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info);
- rho *= rho;
- /* Find the new singular values. */
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dlasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j],
- &vt[j * vt_dim1 + 1], info);
- /* If the zero finder fails, the computation is terminated. */
- if (*info != 0) {
- return 0;
- }
- /* L30: */
- }
- /* Compute updated Z. */
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
- i__2 = i__ - 1;
- for (j = 1; j <= i__2; ++j) {
- z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
- i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
- /* L40: */
- }
- i__2 = *k - 1;
- for (j = i__; j <= i__2; ++j) {
- z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
- i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
- /* L50: */
- }
- d__2 = sqrt((d__1 = z__[i__], abs(d__1)));
- z__[i__] = d_sign(&d__2, &q[i__ + q_dim1]);
- /* L60: */
- }
- /* Compute left singular vectors of the modified diagonal matrix, */
- /* and store related information for the right singular vectors. */
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ *
- vt_dim1 + 1];
- u[i__ * u_dim1 + 1] = -1.;
- i__2 = *k;
- for (j = 2; j <= i__2; ++j) {
- vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__
- * vt_dim1];
- u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
- /* L70: */
- }
- temp = _starpu_dnrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
- q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
- i__2 = *k;
- for (j = 2; j <= i__2; ++j) {
- jc = idxc[j];
- q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
- /* L80: */
- }
- /* L90: */
- }
- /* Update the left singular vector matrix. */
- if (*k == 2) {
- _starpu_dgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset],
- ldq, &c_b26, &u[u_offset], ldu);
- goto L100;
- }
- if (ctot[1] > 0) {
- _starpu_dgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1],
- ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu);
- if (ctot[3] > 0) {
- ktemp = ctot[1] + 2 + ctot[2];
- _starpu_dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1]
- , ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1],
- ldu);
- }
- } else if (ctot[3] > 0) {
- ktemp = ctot[1] + 2 + ctot[2];
- _starpu_dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1],
- ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu);
- } else {
- _starpu_dlacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
- }
- _starpu_dcopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
- ktemp = ctot[1] + 2;
- ctemp = ctot[2] + ctot[3];
- _starpu_dgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2,
- &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu);
- /* Generate the right singular vectors. */
- L100:
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = _starpu_dnrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
- q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
- i__2 = *k;
- for (j = 2; j <= i__2; ++j) {
- jc = idxc[j];
- q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
- /* L110: */
- }
- /* L120: */
- }
- /* Update the right singular vector matrix. */
- if (*k == 2) {
- _starpu_dgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset]
- , ldvt2, &c_b26, &vt[vt_offset], ldvt);
- return 0;
- }
- ktemp = ctot[1] + 1;
- _starpu_dgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[
- vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt);
- ktemp = ctot[1] + 2 + ctot[2];
- if (ktemp <= *ldvt2) {
- _starpu_dgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1],
- ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1],
- ldvt);
- }
- ktemp = ctot[1] + 1;
- nrp1 = *nr + *sqre;
- if (ktemp > 1) {
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
- /* L130: */
- }
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
- /* L140: */
- }
- }
- ctemp = ctot[2] + 1 + ctot[3];
- _starpu_dgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, &
- vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 +
- 1], ldvt);
- return 0;
- /* End of DLASD3 */
- } /* _starpu_dlasd3_ */
|