123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- /* dlasd0.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__0 = 0;
- static integer c__2 = 2;
- /* Subroutine */ int _starpu_dlasd0_(integer *n, integer *sqre, doublereal *d__,
- doublereal *e, doublereal *u, integer *ldu, doublereal *vt, integer *
- ldvt, integer *smlsiz, integer *iwork, doublereal *work, integer *
- info)
- {
- /* System generated locals */
- integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
- /* Builtin functions */
- integer pow_ii(integer *, integer *);
- /* Local variables */
- integer i__, j, m, i1, ic, lf, nd, ll, nl, nr, im1, ncc, nlf, nrf, iwk,
- lvl, ndb1, nlp1, nrp1;
- doublereal beta;
- integer idxq, nlvl;
- doublereal alpha;
- integer inode, ndiml, idxqc, ndimr, itemp, sqrei;
- extern /* Subroutine */ int _starpu_dlasd1_(integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, integer *, integer *, doublereal *,
- integer *), _starpu_dlasdq_(char *, integer *, integer *, integer *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlasdt_(integer *, integer *,
- integer *, integer *, integer *, integer *, integer *), _starpu_xerbla_(
- char *, integer *);
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* Using a divide and conquer approach, DLASD0 computes the singular */
- /* value decomposition (SVD) of a real upper bidiagonal N-by-M */
- /* matrix B with diagonal D and offdiagonal E, where M = N + SQRE. */
- /* The algorithm computes orthogonal matrices U and VT such that */
- /* B = U * S * VT. The singular values S are overwritten on D. */
- /* A related subroutine, DLASDA, computes only the singular values, */
- /* and optionally, the singular vectors in compact form. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* On entry, the row dimension of the upper bidiagonal matrix. */
- /* This is also the dimension of the main diagonal array D. */
- /* SQRE (input) INTEGER */
- /* Specifies the column dimension of the bidiagonal matrix. */
- /* = 0: The bidiagonal matrix has column dimension M = N; */
- /* = 1: The bidiagonal matrix has column dimension M = N+1; */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry D contains the main diagonal of the bidiagonal */
- /* matrix. */
- /* On exit D, if INFO = 0, contains its singular values. */
- /* E (input) DOUBLE PRECISION array, dimension (M-1) */
- /* Contains the subdiagonal entries of the bidiagonal matrix. */
- /* On exit, E has been destroyed. */
- /* U (output) DOUBLE PRECISION array, dimension at least (LDQ, N) */
- /* On exit, U contains the left singular vectors. */
- /* LDU (input) INTEGER */
- /* On entry, leading dimension of U. */
- /* VT (output) DOUBLE PRECISION array, dimension at least (LDVT, M) */
- /* On exit, VT' contains the right singular vectors. */
- /* LDVT (input) INTEGER */
- /* On entry, leading dimension of VT. */
- /* SMLSIZ (input) INTEGER */
- /* On entry, maximum size of the subproblems at the */
- /* bottom of the computation tree. */
- /* IWORK (workspace) INTEGER work array. */
- /* Dimension must be at least (8 * N) */
- /* WORK (workspace) DOUBLE PRECISION work array. */
- /* Dimension must be at least (3 * M**2 + 2 * M) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = 1, an singular value did not converge */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1;
- vt -= vt_offset;
- --iwork;
- --work;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -2;
- }
- m = *n + *sqre;
- if (*ldu < *n) {
- *info = -6;
- } else if (*ldvt < m) {
- *info = -8;
- } else if (*smlsiz < 3) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLASD0", &i__1);
- return 0;
- }
- /* If the input matrix is too small, call DLASDQ to find the SVD. */
- if (*n <= *smlsiz) {
- _starpu_dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset],
- ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], info);
- return 0;
- }
- /* Set up the computation tree. */
- inode = 1;
- ndiml = inode + *n;
- ndimr = ndiml + *n;
- idxq = ndimr + *n;
- iwk = idxq + *n;
- _starpu_dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
- smlsiz);
- /* For the nodes on bottom level of the tree, solve */
- /* their subproblems by DLASDQ. */
- ndb1 = (nd + 1) / 2;
- ncc = 0;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
- /* IC : center row of each node */
- /* NL : number of rows of left subproblem */
- /* NR : number of rows of right subproblem */
- /* NLF: starting row of the left subproblem */
- /* NRF: starting row of the right subproblem */
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nlp1 = nl + 1;
- nr = iwork[ndimr + i1];
- nrp1 = nr + 1;
- nlf = ic - nl;
- nrf = ic + 1;
- sqrei = 1;
- _starpu_dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &vt[
- nlf + nlf * vt_dim1], ldvt, &u[nlf + nlf * u_dim1], ldu, &u[
- nlf + nlf * u_dim1], ldu, &work[1], info);
- if (*info != 0) {
- return 0;
- }
- itemp = idxq + nlf - 2;
- i__2 = nl;
- for (j = 1; j <= i__2; ++j) {
- iwork[itemp + j] = j;
- /* L10: */
- }
- if (i__ == nd) {
- sqrei = *sqre;
- } else {
- sqrei = 1;
- }
- nrp1 = nr + sqrei;
- _starpu_dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &vt[
- nrf + nrf * vt_dim1], ldvt, &u[nrf + nrf * u_dim1], ldu, &u[
- nrf + nrf * u_dim1], ldu, &work[1], info);
- if (*info != 0) {
- return 0;
- }
- itemp = idxq + ic;
- i__2 = nr;
- for (j = 1; j <= i__2; ++j) {
- iwork[itemp + j - 1] = j;
- /* L20: */
- }
- /* L30: */
- }
- /* Now conquer each subproblem bottom-up. */
- for (lvl = nlvl; lvl >= 1; --lvl) {
- /* Find the first node LF and last node LL on the */
- /* current level LVL. */
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__1 = lvl - 1;
- lf = pow_ii(&c__2, &i__1);
- ll = (lf << 1) - 1;
- }
- i__1 = ll;
- for (i__ = lf; i__ <= i__1; ++i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- if (*sqre == 0 && i__ == ll) {
- sqrei = *sqre;
- } else {
- sqrei = 1;
- }
- idxqc = idxq + nlf - 1;
- alpha = d__[ic];
- beta = e[ic];
- _starpu_dlasd1_(&nl, &nr, &sqrei, &d__[nlf], &alpha, &beta, &u[nlf + nlf *
- u_dim1], ldu, &vt[nlf + nlf * vt_dim1], ldvt, &iwork[
- idxqc], &iwork[iwk], &work[1], info);
- if (*info != 0) {
- return 0;
- }
- /* L40: */
- }
- /* L50: */
- }
- return 0;
- /* End of DLASD0 */
- } /* _starpu_dlasd0_ */
|